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Abstract
Variance in predictions across different trained
models is a significant, under-explored source
of error in fair classification. Empirically, the
variance on some instances is so large that
decisions can be effectively arbitrary. To study
this problem, we perform a large-scale empirical
study and make four overarching contributions:
We 1) Define a metric called self-consistency, de-
rived from variance, which we use as a proxy for
measuring and reducing arbitrariness; 2) Develop
an ensembling algorithm that abstains from clas-
sification when a prediction would be arbitrary; 3)
Conduct the largest to-date empirical study of the
role of variance (vis-a-vis self-consistency and ar-
bitrariness) in fair classification; and, 4) Release a
toolkit that makes the US Home Mortgage Disclo-
sure Act (HMDA) datasets easily usable for future
research. Altogether, our empirical results reveal
shocking insights about reproducibility. Most
fairness classification benchmarks are close-
to-fair when taking into account the amount of
arbitrariness present in predictions. Subgroup
error rates are similar before we even try to
apply common fairness interventions.

1. Introduction
A goal of algorithmic fairness is to develop techniques that
measure and mitigate discrimination in automated decision-
making systems. In binary fair classification, this often
involves training a model to satisfy a chosen fairness metric,
which typically defines fairness as parity between model
error rates for the different demographic subgroups in the
dataset (Barocas et al., 2019). However, even if a model’s
classification decisions satisfy a particular fairness metric,
it is not necessarily the case the model is equally confi-
dent in each prediction. This becomes clear if we measure
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Figure 1. 10 logistic regression models trained on bootstrap repli-
cates shows how models can be very consistent in predictions ŷ
for some individuals (Ind. 1) and random for others (Ind. 2).

variance between models. In this paper, we train multi-
ple models by sampling subsets from the original dataset,
measure the disagreement in predictions between models
trained on each subset, and interpret this disagreement as
a lack of confidence in the classification decision. Empir-
ically, some instances can yield decisions that exhibit so
much disagreement that they are effectively arbitrary.

We modify variance to define a metric of self-consistency,
which we use as a quantitative proxy for measuring
the arbitrariness of model outputs. To understand this
intuitively, consider the following experiment: We fit 10
logistic regression models using the same learning process,
which draws different subsamples of the training set from
the COMPAS prison recidivism dataset (Larson et al., 2016;
Friedler et al., 2019), and we compare the resulting classifi-
cations for two individuals in the test set. Figure 1 shows a
difference in the consistency of predictions on Individual 1
vs. Individual 2. The 10 models completely agree to classify
Individual 1 as “will recidivate” and disagree completely
on whether to classify Individual 2 as “will” or “will not
recidivate.” If we were to pick one model at random to use
in practice, there would be no effect on how Individual 1 is
classified; yet, for Individual 2, the prediction is effectively
random. The classification of Individual 2 is arbitrary. We
can interpret Figure 1 to mean that the learning process that
produced these predictions is not sufficiently confident to
justify assigning Individual 2 either decision outcome.

Using just one model could subject individuals to conse-
quential decisions for which the learning process is arbitrary
(Citron and Pasquale, 2014; Cooper et al., 2022; Creel and
Hellman, 2022; Black et al., 2022b). Further, this arbi-
trariness can also bring about discrimination if classification
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decisions are systematically more arbitrary for certain demo-
graphic groups. However, popular fair classification metrics
are commonly applied to evaluate the fairness of a single
model (Hardt et al., 2016; Pleiss et al., 2017; Kleinberg et al.,
2017; Chouldechova, 2017; Calders et al., 2009). Using a
single model can mask the arbitrariness of its predictions. In-
stead, to reveal arbitrariness, we must examine distributions
of possible models for a given learning process, like the one
visualized in Figure 1. With this shift in frame, we ask:

What is the empirical role of arbitrariness in real-world
fairness classification tasks?

To study this question, we make four contributions: We
1. Quantify arbitrariness. We formalize a metric called

self-consistency, derived from statistical variance, which
we use as a quantitative proxy for arbitrariness. Self-
consistency is a simple yet powerful tool for empirical
analyses of fair classification (Section 3).

2. Ensemble to improve self-consistency. We extend
bagging to allow for abstaining from prediction on in-
stances for which self-consistency is low. This improves
overall self-consistency and accuracy (Section 4).

3. Perform a comprehensive empirical study of variance
in fair classification. We conduct the largest-to-date
systematic study of the role of variance in empirical fair
classification, through the lens of self-consistency and its
relationship to arbitrariness. Our results reveal shocking
insights concerning empirical reproducibility (Section 5).
Notably, most fairness classification benchmarks are
close-to-fair when taking into account the amount of
arbitrariness present in predictions. Subgroup error
rates are similar before we even try to apply common
pre-, in-, or post-processing fairness interventions.
In turn, our study raises crucial questions about future
directions for research in fair classification (Section 6).

4. Release a large-scale fairness dataset package. We
observe that variance, particularly in small datasets, can
undermine the reliability of conclusions about fairness
interventions. We therefore open-source a package that
makes the large-scale US Home Mortgage Disclosure
Act datasets (HMDA) easily usable for future research.

2. Preliminaries on Fair Binary Classification
To analyze arbitrariness in the context of algorithmic fair-
ness, we first need to establish our background definitions
for fair binary classification. This material is likely famil-
iar to most readers. We nevertheless highlight particular
details important for understanding the empirical
methods that enable our contributions. We present the
fair binary classification problem formulation (Section 2.1)
and associated empirical approximations (Section 2.2) with
an emphasis on the distribution of possible models that
could be produced from training on different subsets of data

drawn from the same data distribution.

2.1. Problem formulation
Consider a distribution q(·), from which we can sample
examples (x, g, o); x ∈ X ⊆ Rm are instances with m
features, and g ∈ G is a group of protected attributes that
we do not use for learning (e.g., race, gender).1 The o ∈ O
are the associated observed labels, and O ⊆ Y, where Y =
{0, 1} is the label space. From q(·) we can sample training
datasets {(x, g, o)}ni=1, with D representing the set of all
n-sized datasets. To reason about the possible models of a
hypothesis class H that could be learned from the different
subsampled dataset, Dk ∈ D, we define a learning process:

Definition 2.1. A learning process is a randomized func-
tion that runs instances of a training procedure A on
each Dk ∈ D and a hypothesis class H, in order to pro-
duce a deterministic classifier hDk

∈ H. A particular run
A(Dk) → hDk

, where hDk
: X → Y is a deterministic

mapping from the instance space X to the label space Y.

By running over different A(Dk), a learning process pro-
duces a distribution over possible trained models, µ. Reason-
ing about µ, rather than individual models, enables us to con-
textualize the arbitrariness in the data, which is in turn cap-
tured by learned models (Section 3). Each particular model
hDk

∼ µ deterministically produces classifications ŷ =
hDk

(x).2 The classification rule is hDk
(x) = 1[rDk

(x) ≥
τ ], for some threshold τ , where regressor rDk

: X → [0, 1]
computes the probability of positive classification.

Analyzing error. Executing a training procedure A(Dk)
produces hDk

∼ µ by minimizing the loss of predictions
ŷ with respect to their associated observed labels o in
Dk. This loss is computed by a chosen loss function
ℓ : Y × Y 7→ R. We compute predictions for a test set
of fresh examples and calculate their loss. The loss is an
estimate of the error of hDk

, which is dependent on the
specific dataset Dk used for training. To generalize to the
error of all possible models produced by a specific learning
process (Definition 2.1), we consider the expected error,
Err(A,D, (x, g, o)) = ED[ℓ(o, ŷ)|x = x].

In fair classification, it is common to use 0-1 loss ≜ 1[ŷ ̸=
o] or cost-sensitive loss, which assigns asymmetric costs C01
for false positives FP and C10 for false negatives FN (Agar-
wal et al., 2018; Elkan, 2001). These costs are related to
the classifier threshold τ = C01

C01+C10
, with C01, C10 ∈ R+

(Appendix A.3). Common fair classification definitions,
such as Equality of Opportunity (Hardt et al., 2016), fur-
ther analyze error by computing disparities across group-
specific error rates FPRg and FNRg . For example, FPRg ≜

1We examine the common setting in which |g| = 1, and abuse
notation by treating g like a scalar with G = {0, 1}.

2Definition 2.1 does not include the data collection process
or hyperparameter optimization, which can further introduce non-
determinism, and are assumed to have been already completed.
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pµ[rD(x) ≥ τ |o = 0,g = g] = pµ[ŷ = 1|o = 0,g = g].
Model-specific FPRg and FNRg are further-conditioned on
the dataset used in training, i.e., D = Dk.

2.2. Empirical approximation of the formulation
We typically only have access to one dataset, not the data
distribution q(·). In empirical work on fair classification, it
is common to estimate expected error by performing cross
validation (CV) on this dataset to produce a small handful of
models (Chen et al., 2018; Jiang et al., 2020; Corbett-Davies
et al., 2017, e.g.). CV can be unreliable when there is
high variance; it can produce error estimates that are high
variance, and does not reliably estimate expected error with
respect to possible models µ (Section 5). For more details,
see Efron and Tibshirani (1997; 1993); Wager (2020).

To get around these reliability issues, one can use the boot-
strap method.3 Bootstrapping splits the available data into
train and test sets, and then simulates drawing different train-
ing datasets from a distribution by resampling the train set D̂
to generate replicates D̂1, D̂2, . . . , D̂B := D̂. We use these
replicates D̂ to approximate the learning process on D (Def-
inition 2.1). We evaluate the resulting ĥD̂1

, ĥD̂2
, . . . , ĥD̂B

by examining their predictions for the same reserved test
set, which enables us to produce comparisons across test
instances like in Figure 1 (Appendix A.4).

3. Variance, Self-Consistency, & Arbitrariness
From these preliminaries, we can now pin down arbitrari-
ness more precisely. We develop a quantitative proxy
for measuring arbitrariness, called self-consistency (Sec-
tion 3.2), which is derived from a definition of statistical
variance between different model predictions (Section 3.1).
We then illustrate how self-consistency is a simple yet pow-
erful tool for revealing the role of arbitrariness in fair classifi-
cation (Section 3.3). In Section 4, we introduce an algorithm
to improve self-consistency and compute self-consistency
on popular fairness benchmarks in Section 5.

3.1. Arbitrariness resembles statistical variance
In Section 2, we discussed how common fairness definitions
analyze error by computing the false positive rate (FPR)
and false negative rate (FNR). Another common way to
formalize error is as a mathematical decomposition of differ-
ent statistical sources: noise-, bias-, and variance-induced
error (Abu-Mostafa et al., 2012; Geman et al., 1992). In
Appendix B.1, we informally describe noise and bias. To
understand our metric for self-consistency (Section 3.2), we
first describe how the arbitrariness in Figure 1 (almost, but
not quite) resembles variance.

Informally, variance-induced error quantifies fluctuations in

3Alternatively, we could use sampling, e.g. scalable exact
MCMC (Zhang et al., 2020). We use optimization, as it is the stan-
dard tool (that allows use of standard models) in fair classification.

individual example predictions for different models hDk
∈

H. Variance is the error in the learning process that comes
from training on different datasets Dk ∈ D. In theory, we
measure variance by imagining training all possible hDk

∼
µ, testing them all on the same test instance (x, g), and then
quantifying how much the resulting classifications for (x, g)
deviate from each other. More formally,
Definition 3.1. For all pairs of possible models hDi

, hDj
∼

µ (i ̸= j), the variance for a fresh test instance (x, g) is
var

(
A,D, (x, g)

)
≜ EhDi

∼µ,hDj
∼µ

[
ℓ
(
hDi(x), hDj (x)

)]
.

We can approximate variance directly by using the bootstrap
method (Section 2.2, Appendix B.1). For 0-1 and cost-
sensitive loss with costs C01, C10 ∈ R+ (Section 2.1), we
can generate B replicates to train B concrete models. For
B = B0 + B1 > 1, where B0 and B1 respectively denote
the number of 0- and 1-class predictions for (x, g),

ˆvar
(
A, D̂, (x, g)

)
:=

1

B(B − 1)

∑
i̸=j

ℓ
(
ĥD̂i

(x), ĥD̂j
(x)

)
=

(C01 + C10)B0B1

B(B − 1)
. (1)

We derive (1) in Appendix B.2 and show that, for increas-
ingly large B, ˆvar is defined on [0, C01+C10

4 + ϵ].

3.2. Defining self-consistency from variance
It is clear from above that, in general, variance (1) is
unbounded. We can always increase the maximum possible
ˆvar by increasing the magnitude of our chosen C01 and

C10.4 However, we can see from Figure 1 that the most
important takeaway is the amount of (dis)agreement,
reflected in the counts B0 and B1. Here, there is no notion
of cost. So, variance (1) does not exactly measure what we
want to capture. Instead, we want to focus unambiguously
on the (dis)agreement part of variance, which we call
self-consistency of the learning process:
Definition 3.2. For all pairs of possible models
hDi

, hDj
∼ µ (i ̸= j), the self-consistency of the

learning process for a fresh test instance (x, g) is
SC

(
A,D, (x, g)

)
≜ EhDi

∼µ,hDj
∼µ

[
hDi(x) = hDj (x)

]
= phDi

∼µ,hDj
∼µ

(
hDi(x) = hDj (x)

)
. (2)

In words, (2) models the probability that two models pro-
duced by the same learning process on different training data
subsets agree on their predictions for the same test instance.5

Like variance, we can derive an empirical approximation of
SC. Using the bootstrap method with B = B0 +B1 > 1,
ŜC

(
A, D̂, (x, g)

)
:=

1

B(B − 1)

∑
i ̸=j

1
[
ĥD̂i

(x) = ĥD̂j
(x)

]
= 1− 2B0B1

B(B − 1)
. (3)

4Because τ = C01
C01+C10

, for a given τ we can scale costs arbi-
trarily and have the same decision rule (Section 2.1). It is relative
cost that affects the number of classifications B0 and B1, which in
turn impact the comparison done in Figure 1.

5(2) follows from the fact that, in our setup, a learning process is
equally likely to draw to any datasets DiDj ∈ D (Appendix B.3).
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.Throughout, we use the shorthand self-consistency, but it
is important to note that Definition 3.2 is a property of
the distribution over possible models µ produced by the
learning process, not of individual models. We summarize
other important takeaways below:

Terminology. In naming our metric, we intentionally
evoke related notions of “consistency” in logic and the
law (Fuller (1965); Stalnaker (2006), Appendix B.3.1).

Interpretation. Definition 3.2 is defined on [0.5, 1], which
coheres with the intuition in Figure 1: 0.5 and 1 respectively
reflect minimal (Individual 2) and maximal (Individual 1)
SC. SC, unlike FPR and FNR (Section 2.1), does not depend
on the observed label o. It captures the learning process’s
confidence in a classification ŷ, but says nothing directly
about ŷ’s accuracy. By construction, low self-consistency
indicates high variance, and vice versa. We derive
empirical ŜC (3) from ˆvar (1) by leveraging observations
about the definition of ˆvar for 0-1 loss (Appendix B.3).

Empirical focus. Since SC depends on the particular data
subsets used in training, conclusions about its relevance will
vary according to task. This is why we take an empirical ap-
proach for our main results — of running a large-scale study
on many different datasets to extract more general observa-
tions about ŜC’s practical effects (Section 5). We typically
use B = 101, which yields a ŜC range of [≈ 0.495, 1] in
practice.6 While there are no costs C01, C10 in computing
(3), they still effect empirical measurements of ŜC. Because
C01 and C10 affect τ (Section 2.1), they impact the concrete
number of B0 and B1, and thus ŜC, measured empirically.

Relationship to fairness concepts. Self-consistency is
qualitatively different from traditional fairness metrics. As
stated above, unlike FPR and FNR, SC does not depend on
observed label o. This has two important implications. First,
while the calibration metric in algorithmic fairness also mea-
sures a notion of confidence, it is fundamentally different.
Calibration reflects confidence with respect to a model pre-
dicting o, but says nothing about the relative confidence in
predictions ŷ produced by the learning process (Pleiss et al.,
2017). Second, a common assumption in algorithmic fair-
ness is that there is label bias — that unfairness is due in part
to discrimination reflected in recorded decisions o (Friedler
et al., 2016; Cooper and Abrams, 2021). It is arguably a
nice side effect that self-consistency does not depend on o;
however, it is also possible to be perfectly self-consistent
and inaccurate (e.g., ŷk ̸= o, ∀k; Section 6).

3.3. Illustrating self-consistency in practice
ŜC enables us to empirically evaluate arbitrariness in classifi-
cation tasks. It is straightforward to compute ŜC (3) with re-
spect to multiple test instances (x, g) — for all instances in a

6Efron and Tibshirani (1993) recommend B ∈ {50 . . . 200}.

test set or for all instances conditioned on membership in g.

Therefore, beyond visualizing ŜC for individuals (Figure 1),
we can also do so across sets of individuals. We plot the
cumulative distribution (CDF) of ŜC over the groups g in
the test set. In Figure 2, we provide illustrative examples
from two of the most common fair classification bench-
marks (Fabris et al., 2022), COMPAS and Old Adult us-
ing random forests (RFs). The x-axis shows the range of
self-consistency (for B = 101, [≈ 0.495, 1]), and the y-axis
shows the cumulative proportion of the test set that attains
up to the x-amount of ŜC. We split the available data into
train and test sets, and bootstrap the train set B = 101
times to train models ĥ1, ĥ2, . . . , ˆh101 (Section 2.2). We
repeat this process on 10 train/test splits, and the resulting
confidence intervals (shown in inset) indicate that our ŜC
estimates are stable. We group observations regarding these
examples into two overarching categories:

Individual arbitrariness. Both CDFs show that ŜC
varies drastically across test instances. For RFs on the
COMPAS dataset, about one-half of instances are under
70% self-consistent. Nearly one-quarter of test instances
are effectively 50% self-consistent; they resemble
Individual 2 in Figure 1, meaning that their predictions
are essentially arbitrary. These differences in ŜC across
the test set persist even though the 101 models exhibit
relatively small average disparities ∆ ˆErr, ∆ ˆFPR, and
∆ ˆFNR (Figure 2a, bottom; Section 5.2). This supports our
motivating claim: It is possible to come close to satisfying
fairness metrics, while the learning process exhibits
very different levels of confidence for the underlying
classifications that inform those metrics (Section 1).

Systematic arbitrariness. We can also highlight ŜC
according to groups g. For example, the ŜC plot for
Old Adult shows that it is possible for the degree of
arbitrariness to be systematically worse for a particular
demographic g (Figure 2b). While the lack of ŜC is not
as extreme as it is for COMPAS (Figure 2a) — the majority
of test instances exhibit over 90% ŜC — there is more
arbitrariness in the Male subgroup. We can quantify
such systematic arbitrariness using a measure of distance
between probability distributions such as the Wasserstein-1
distance (W1), which has a closed form for CDFs (Ramdas
et al., 2015). The W1 distance has an intuitive interpretation
for measuring systematic arbitrariness: It computes the total
disparity in SC by examining all possible SC levels κ at
once (Appendix B.3.1). Formally, for two groups g = 0
and g = 1 with respective SC CDFs F0 and F1,

W1 ≜
∫
R
|F0(κ)− F1(κ)| dκ. (4)

For Old Adult, Ŵ1 = 0.127; for COMPAS, which visu-
ally does not indicate systematic arbitrariness, Ŵ1 = 0.007.
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0.0

0.2

0.4

0.6

0.8

1.0
Pr
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y

Non-white (NW)
White (W)

∆ ˆErr ∆ ˆFPR ∆ ˆFNR

1.0± 0.9% 2.0± 0.5% 0.9± 0.3%

ˆErr ˆFPR ˆFNR

Total 36.6± 0.5% 17.3± 0.8% 19.3± 0.7%

NW 36.9± 0.5% 18.0± 0.7% 19.0± 0.8%

W 35.9± 1.3% 16.0± 1.2% 19.9± 1.1%

(a) COMPAS split by race; random forests (RFs)

0.5 0.6 0.7 0.8 0.9 1.0
SC

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Female (F)
Male (M)

∆ ˆErr ∆ ˆFPR ∆ ˆFNR

12.2± 0.0% 6.0± 0.2% 6.3± 0.2%

ˆErr ˆFPR ˆFNR

Total 17.3± 0.3% 7.7± 0.3% 9.6± 0.1%

F 9.0± 0.3% 3.7± 0.1% 5.3± 0.3%

M 21.2± 0.3% 9.7± 0.3% 11.6± 0.1%

(b) Old Adult split by sex; random forests (RFs)

Figure 2. ŜC CDFs for COMPAS (2a) and Old Adult (2b). We train random forests (B = 101 replicates), and repeat with 10 train/test
splits to produce confidence intervals (which are very tight). ŜC is effectively identical across subgroups g in COMPAS; Old Adult
exhibits systematic differences in arbitrariness across g. Tables show mean± STD of the relative disparities ∆ ˆErr,∆ ˆFPR,∆ ˆFNR, and
∆ŜC, e.g., ∆ ˆErr = | ˆErr0 − ˆErr1| (top); and, the absolute ˆErr, ˆFPR, ˆFNR, and ŜC, also broken down by g (bottom) (Appendix E).

4. Accounting for Self-Consistency
By definition, low ŜC signals that there is high ˆvar (Sec-
tion 3.2). It is therefore a natural idea to use variance reduc-
tion techniques to improve SC and thus reduce arbitrariness.

As a starting point for improving ŜC, we perform variance
reduction with Breiman (1996)’s bootstrap aggregation, or
bagging ensembling algorithm. Bagging involves bootstrap-
ping to produce a set of B models (Section 2.2), and then,
for each test instance, producing an aggregated prediction
ŷA, which takes the majority vote of the ŷ1, . . . , ŷB classifi-
cations. This procedure is practically effective for classifiers
with high variance (Breiman, 1996; 1998). However, by
taking the majority vote, bagging embeds the idea that hav-
ing slightly-better-than-random classifiers is sufficient for
improving ensambled predictions, ŷA. Unfortunately, there
exist instances like Individual 2 (Figure 1), where the classi-
fiers in the ensemble are evenly split between classes. This
means that bagging alone cannot overcome arbitrariness.

4.1. Self-consistent ensembling with abstention
To remedy this, we add the option to abstain from prediction
if ŜC is low (Algorithm 1).7 We bootstrap as usual, but only
produce a prediction ŷ ∈ [0, 1] for an instance x, if x sur-
passes a user-specified minimum level of ŜC κ; otherwise, if
an instance fails to achieve a ŜC of at least κ, we Abstain

7A minor adjustment to (3) accounts for abstentions; a simple
proof follows that Algorithm 1 improves ŜC (Appendix D).

from predicting. Based on this strategy, we end up dividing
the test set into two subsets: We group together the
instances we Abstain on in an abstention set and those
we predict on in a prediction set. This method improves
self-consistency through two complementary mechanisms:
1) Variance reduction (inherited from bagging) and 2)
abstaining from instances that exhibit low ŜC (thereby
raising the overall amount of ŜC for the prediction set).

Further, since variance is a component of error (Section 3),
variance reduction also tends to improve accuracy (Breiman,
1996). This leads to an important observation: The ab-
stention set, by definition, exhibits high variance; we can
therefore expect it to exhibit higher error than the prediction
set (Section 5, Appendix E). So, while at first glance it may
seem odd that our solution for arbitrariness is to not pre-
dict, it is worth noting that we often would have predicted
incorrectly on a large portion of the abstention set (Ap-
pendix D). In practice, we test two versions of our method:

Simple ensembling. We run Algorithm 1 to build
ensembles of typical hypothesis classes. For example,
running with B = 101 decision trees and κ = 0.75
produces a bagged classifier that contains 101 underlying
decision trees, for which the bagged classifier abstains from
predicting on test instances that exhibit less than 75% ŜC.
If overall ŜC is low, then simple ensembling will lead to a
large number of abstentions. For example, almost half of all
test instances in COMPAS using random forests would fail
to surpass the threshold κ = 0.75 (Figure 2a). The potential
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Algorithm 1 Self-Consistent Ensembling with Abstention

input training dataset (X,o), A, B, ŜC κ ∈ [0.5, 1], xtest

output ŷ with ŜC ≥ κ or Abstain

1: function BagConsistently
(
(X,o),A, B, κ,xtest

)
2: ŷA := list() ▷ To store ensemble predictions
3: for 1 . . . B do
4: DB ← Bootstrap

(
(X,o)

)
▷ A may produce bagged models ĥDB using DB

5: ĥDB ← A(DB)

6: ŷA.append
(
ĥDB (xtest)

)
▷ ŷ1, . . . , ŷB

7: end for
8: return Aggregate(ŷA, κ)
9: end function

10: ▷ Ensures a super-majority to predict, otherwise abstains
11: function Aggregate

(
ŷ1, . . . , ŷB , κ

)
12: if SelfConsistency(ŷ1, . . . , ŷB) ≥ κ then
13: return argmaxy′∈Y

[∑B
i=1 1[y

′ = ŷi]
]

14: end if
15: return Abstain
16: end function

for large abstention sets informs our second approach:

Super ensembling. When there is low ŜC (and thus high
ˆvar) it can be beneficial to do an initial pass of variance

reduction. That is, we produce bagged classifiers using
traditional bagging but without abstaining, and then apply
Algorithm 1, using those bagged classifiers as the underlying
models ĥ. The first round of bagging raises the overall ŜC
before the second round, which is when we decide whether
to Abstain. We therefore expect this approach to abstain
less; however, it may potentially incur higher error, if simple-
majority-vote bagging chooses ŷ ̸= o (Appendix D).

We also experiment with an Aggregate rule that averages the
output probabilities of the underlying regressors rDk

, and
then applies threshold τ to produce ensembled predictions.
We do not observe major differences in results.

5. Experiments
We release an extensible package of different Aggregate
methods, with which we trained and compared several
million different models over the course of our study. We
include results covering common fair classification datasets
and models: COMPAS, Old Adult, German Credit,
Taiwan Credit, and 3 large-scale New Adult -
CA tasks on logistic regression, decision trees, random
forests, MLPs, and SVMs (Appendix E). Ultimately, when
applying Algorithm 1 to these common tasks, we typically
do not find evidence of significant fairness metric
violations. By accounting for arbitrariness, we observe
close-to-fairness in nearly every task, without applying
common fairness-improving interventions (Section 5.2,
Appendix E). A possible explanation is that most fairness
benchmark tasks are small — fewer than 25, 000 examples
— and this finding might not generalize to larger datasets.

Releasing an HMDA toolkit. We clean and release a larger,
more diverse, and newer dataset for investigating algorith-
mic fairness.8 We examine the NY and TX 2017 subsets of
the the Home Mortgage Data Disclosure Act (HMDA) 2007-
2017 dataset (Federal Financial Institutions Examination
Council, 2017), which have 244, 107 and 576, 978 exam-
ples, respectively. We process all HMDA datasets and release
them with a standalone, easy-to-use software package.

Presentation. To visualize Algorithm 1, we plot the CDFs
of the ŜC of the underlying models used in each ensem-
bling method. We simultaneously plot the results of simple
ensembling (dotted curves) and super ensembling (solid
curves). Instances to the left of the vertical line (the mini-
mum ŜC threshold κ) form the abstention set. We also pro-
vide corresponding mean ± STD fairness and accuracy met-
rics for individual models (our baseline) and for both simple
and super. For ensembling methods, we report these metrics
on the prediction set, along with the abstention rate (ÂR).

We present our results in two sections: We validate the ef-
fectiveness of both ensembling variants (Section 5.1); we
then explain how our results reveal shocking insights about
reproducibility in fairness research (Section 5.2). For all
experiments, we illustrate Algorithm 1 with κ = 0.75, but
κ is task-dependent in practice. We detail our setup, hyper-
parameter optimization, and full results in Appendix E.

5.1. Validating Algorithm 1
We highlight results for two illustrative examples:
Old Adult (Section 3.3) and HMDA-NY-2017, for
ethnicity (Hispanic or Latino (HL), Non-Hispanic or
Latino (NHL)). We plot ŜC CDFs and show ˆFNR metrics
using random forests (RFs; Figure 3). For Old Adult,
the expected disparity of the RF baseline is ∆ ˆFNR = 6.3%.
The light set of curves plots the underlying ŜC for these RFs
(Figure 3a). When we apply simple to these RFs, overall
ˆErr decreases (Appendix E), shown in part by the decrease

in ˆFNRF and ˆFNRM. Fairness also improves: ∆ ˆFNR de-
creases to 4.1%. However, the corresponding ÂR is quite
high, especially for the Male subgroup (g = M, Figure 4).

As expected, super improves overall ŜC through a first
pass of variance reduction (Section 4). The ŜC CDF curves
are brought down, indicating a lower proportion of the test
set exhibits low ŜC. Abstention rate ÂR is lower and more
equal; however, error, while still lower than the baseline
RFs, has gone up for all metrics. There is also a decrease
in systematic arbitrariness (Section 3.3): The dark gray area
for super (Ŵ1 = .014) is smaller than the light gray area
for simple (Ŵ1 = .063) (Appendices B.3.1 & E.4.7).

For HMDA, simple similarly improves ˆFNR, but has a less

8It is repeatedly argued that the field needs such datasets (Ding
et al., 2021, e.g.). HMDA is less commonly used, possibly because
the ≈ 140 million examples are only available in multi-GiB files.
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Figure 3. Algorithm 1: Simple and super ensembling for Old Adult (3a) and HMDA-NY-2017 (3b). Tables each show ˆFNR metrics
(mean ± STD) for individual models (Baseline) and each ensembling method’s prediction set; B = 101, 10 train/test splits (Appendix E).
To highlight systematic arbitrariness (Section 3.3), we shade in gray the area between group-specific ŜC CDFs for each method. An initial
pass of variance reduction in super significantly decreases the systematic arbitrariness in Old Adult.

beneficial effect on fairness (∆ ˆFNR). However, note that
since the baseline is the empirical expected error over thou-
sands of RF models, the specific ∆ ˆFNR is not necessarily
attainable by any individual model. In this respect, simple
has the benefit of obtaining this disparity reliably in practice:
∆ ˆFNR = 1.3% is the mean over 10 simple ensembles, and,
notably, is extremely low, even without applying traditional
fairness techniques. Similar to Old Adult, simple ex-
hibits high ÂR, which decreases with super at the cost of
higher error. ˆFNR still improves for both g in comparison to
the baseline, but the benefits are unequally applied: ˆFNRW
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Figure 4. Group-specific abstention rates ÂRg for each algorithm.
Super abstains less than simple, and the disparity in ÂR between
subgroups in both datasets is similar.

has a larger benefit, so ∆ ˆFNR increases slightly.

Abstention set error. As an example, the average total
ˆErr in the Old Adult simple abstention set is close to

40% — compared to 17% for the RF baseline, and 8% for
simple and 14% for super prediction sets. Thus, beyond
reducing arbitrariness, we abstain from predicting for many
instances for which we also would have been inaccurate.

Trade-off between abstention and error. Algorithm 1
identifies low ŜC instances for which ML prediction
does a poor job. Nevertheless, it may be infeasible for
some applications to tolerate a high ÂR. Thus the choice
of κ and ensembling method should be considered a
context-dependent choice (Section 6).

Unequal abstention rates. When there is a high degree of
systematic arbitrariness, ÂR can vary a lot by g (Figure 4a).
With respect to improving ŜC and error, this may be a rea-
sonable outcome. Further, we rarely observe systematic arbi-
trariness; unequal ÂR is uncommon in practice (Section 6).

5.2. A problem of fairness
We additionally experiment on COMPAS, one of the three
most common fairness datasets (Fabris et al., 2022). Al-
gorithm 1 is similarly very effective at reducing arbitrari-
ness (Figure 5), and is able to obtain state-of-the-art ac-
curacy (Lin et al., 2020) with ∆ ˆFPR between 1.8 − 3% ;
analogous results for German Credit indicate statistical
equivalence in fairness metrics (Appendix E).

These low-single-digit fairness disparities do not cohere
with much of the literature on fair classification, which often
reports much larger fairness violations (Larson et al., 2016,
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Figure 5. Algorithm 1: COMPAS, logistic regression, B = 101,
10 train/test splits. Table shows mean ˆFPR ± STD for individual
models (Baseline) and each ensembling method’s prediction set.
The ŜC CDFs are effectively identical across subgroups.

notably). However, as noted in Section 2, most work on
fair classification examines individual models, selected via
cross-validation with a handful of random seeds. Our results
suggest that selecting between a few individual models in
fair classification experiments is unreliable (Wager, 2020).
When we more rigorously estimate expected error and
ensemble, we have difficulty reproducing unfairness in
practice. Variance in the underlying models in µ seems to
be the culprit. The individual models we train on these tasks
exhibit radically different subgroup-specific error rates.
Our strategy of shifting focus to the overall behavior of µ
provides a solution: We not only mitigate arbitrariness, we
also improve accuracy and usually average away most
underlying, individual model unfairness (Appendix E.5).

6. Discussion and Related Work
In this paper, we advocate for a shift in thinking about in-
dividual models to the distribution over possible models in
fair classification tasks, as this makes visible latent arbitrari-
ness in underlying model decisions. We suggest a metric
of self-consistency as a proxy for arbitrariness (Section 3)
and an intuitive extension of the classic bagging algorithm
to mitigate it (Section 4), which we observe to be tremen-
dously effective with respect to improving ŜC, accuracy,
and fairness metrics (Section 5, Appendix E).

Our findings contradict accepted truths in algorithmic
fairness. For example, while much work posits that there is
an inherent analytical trade-off between fairness and accu-
racy (Corbett-Davies et al., 2017; Menon and Williamson,
2018), our empirical studies complement prior work that
disputes the practical relevance of this formulation (Rodolfa
et al., 2021). We show it is typically possible to achieve
higher accuracy while retaining close-to-fairness — and

to do so without using fairness-focused interventions.

Other research also calls attention to the need for metrics
beyond fairness and accuracy. Model multiplicity reasons
about sets of models that have similar accuracy (Breiman,
2001), but differ in underlying properties due to variance
in decision rules (Black et al., 2022b; Marx et al., 2020;
Watson-Daniels et al., 2022). This work still emphasizes
selecting in an individual model. Instead, our work uses
a distribution over possible models (with no claims about
model accuracy) to reason about arbitrariness. Some related
work considers the role of uncertainty and variance in fair-
ness (Ali et al., 2021; Bhatt et al., 2021; Chen et al., 2018;
Khan et al., 2023). Notably, Black et al. (2022a) concur-
rently investigate abstention-based ensembling, employing
a strategy that does not fundamentally address the arbitrari-
ness we describe (Appendix C). Also concurrently, Ko et al.
(2023) build on prior work that studies fairness and variance
in deep learning tasks (Forde et al., 2021; Qian et al., 2021),
and find that fairness emerges in deep ensembles.

Most importantly, we take a comprehensive empirical
approach missing from prior work. We uncover alarming
results: Almost all tasks and settings demonstrate close-
to or complete statistical equality in fairness metrics,
after accounting for arbitrariness (Appendix E.4). Old
Adult (Figure 3a) is one of two exceptions. Further,
we do not find many tasks that exhibit high systematic
arbitrariness and, even when we do, we can substantially
improve it. These result hold for larger, newer datasets like
HMDA, which we clean and release, and New Adult (Ding
et al., 2021). Altogether, our findings indicate that variance
is undermining the reliability of conclusions in fair clas-
sification experiments. It is worth revisiting all prior fair
classification experiments that depend on CV or few models.

So, what does this mean for fairness research? While
the field has put forth numerous theoretical results about
(un)fairness regarding single models — impossibility of
satisfying multiple metrics (Kleinberg et al., 2017), post-
processing individual models to achieve a particular met-
ric (Hardt et al., 2016) — these results seem to miss the
point. By examining individual models, arbitrariness re-
mains latent; when we account for arbitrariness in practice,
most problems of empirical unfairness go away.

We are not suggesting that there are no reasons to be con-
cerned with the fairness of machine learning models. We
are not even challenging the idea that actual violations of
standard fairness metrics should be of concern. Instead, we
are suggesting that common formalisms for measuring fair-
ness can lead to false conclusions about the degree to which
such violations are happening in practice. Worse, they can
conceal the tremendous amount of arbitrariness that should
really be the issue of concern.
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Lastly, it has not escaped our notice that, altogether,
our results signal severe limits to prediction in social
settings (Narayanan and Salganik, 2020). It is true that
our method performs reasonably well with respect to both
fairness and accuracy metrics; however, arbitrariness is
such a rampant problem, it is arguably unreasonable to
assign these metrics much value in practice.
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Melançon, Ranganath Krishnan, Jason Stanley, Omesh
Tickoo, Lama Nachman, Rumi Chunara, Madhulika
Srikumar, Adrian Weller, and Alice Xiang. Uncertainty
as a Form of Transparency: Measuring, Communicat-
ing, and Using Uncertainty. In Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, page
401–413. Association for Computing Machinery, New
York, NY, USA, 2021.

Emily Black, Klas Leino, and Matt Fredrikson. Selective
Ensembles for Consistent Predictions. In International
Conference on Learning Representations, 2022a.

Emily Black, Manish Raghavan, and Solon Barocas. Model
Multiplicity: Opportunities, Concerns, and Solutions.
In 2022 ACM Conference on Fairness, Accountabil-
ity, and Transparency, FAccT ’22, page 850–863, New
York, NY, USA, 2022b. Association for Computing
Machinery. ISBN 9781450393522. doi: 10.1145/
3531146.3533149. URL https://doi.org/10.
1145/3531146.3533149.

Leo Breiman. Bagging Predictors. Machine Learning,
24(2):123–140, August 1996. ISSN 0885-6125. doi:
10.1023/A:1018054314350.

Leo Breiman. Arcing classifiers. Annals of Statistics, 26:
801–823, 1998.

Leo Breiman. Statistical Modeling: The Two Cultures. Sta-
tistical Science, 16(3):199–215, 2001. ISSN 08834237.

Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy.
Building Classifiers with Independency Constraints. In
2009 IEEE International Conference on Data Mining
Workshops, pages 13–18, 2009.

Irene Chen, Fredrik D Johansson, and David Sontag. Why Is
My Classifier Discriminatory? In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

Alexandra Chouldechova. Fair Prediction with Disparate
Impact: A Study of Bias in Recidivism Prediction Instru-
ments. Big Data, 5(2):153–163, 2017.

Danielle Keats Citron and Frank A. Pasquale. The Scored
Society: Due Process for Automated Predictions. Wash-
ington Law Review, 89:655–690, 2014.

A. Feder Cooper and Ellen Abrams. Emergent Unfairness
in Algorithmic Fairness-Accuracy Trade-Off Research.
In Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, page 46–54, New York, NY,
USA, 2021. Association for Computing Machinery. ISBN
9781450384735.

https://doi.org/10.1145/3461702.3462630
https://doi.org/10.1145/3461702.3462630
http://www.fairmlbook.org
http://www.fairmlbook.org
https://doi.org/10.1145/3531146.3533149
https://doi.org/10.1145/3531146.3533149


Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

A. Feder Cooper, Karen Levy, and Christopher De Sa.
Accuracy-Efficiency Trade-Offs and Accountability in
Distributed ML Systems. In Equity and Access in Al-
gorithms, Mechanisms, and Optimization, New York,
NY, USA, 2021a. Association for Computing Machinery.
ISBN 9781450385534. URL https://doi.org/10.
1145/3465416.3483289.

A. Feder Cooper, Yucheng Lu, Jessica Zosa Forde, and
Christopher De Sa. Hyperparameter Optimization Is De-
ceiving Us, and How to Stop It. In Advances in Neural
Information Processing Systems, volume 34. Curran As-
sociates, Inc., 2021b.

A. Feder Cooper, Emanuel Moss, Benjamin Laufer, and
Helen Nissenbaum. Accountability in an Algorithmic
Society: Relationality, Responsibility, and Robustness in
Machine Learning. In 2022 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’22, page
864–876, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450393522. doi:
10.1145/3531146.3533150.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad
Goel, and Aziz Huq. Algorithmic decision making and
the cost of fairness. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, page 797–806, New
York, NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450348874.

Kathleen Creel and Deborah Hellman. The Algorithmic
Leviathan: Arbitrariness, Fairness, and Opportunity in
Algorithmic Decision-Making Systems. Canadian Jour-
nal of Philosophy, 52(1):26–43, 2022.

Frances Ding, Moritz Hardt, John Miller, and Ludwig
Schmidt. Retiring Adult: New Datasets for Fair Machine
Learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 6478–6490. Curran Associates, Inc., 2021.

Pedro Domingos. A Unified Bias-Variance Decomposition
and Its Applications. In Proceedings of the Seventeenth
International Conference on Machine Learning, ICML
’00, page 231–238, San Francisco, CA, USA, 2000a. Mor-
gan Kaufmann Publishers Inc. ISBN 1558607072.

Pedro Domingos. A unified bias-variance decompo-
sition. Technical report, University of Washington,
2000b. URL https://homes.cs.washington.
edu/˜pedrod/bvd.pdf.

B. Efron. Bootstrap Methods: Another Look at the Jack-
knife. The Annals of Statistics, 7(1):1 – 26, 1979. doi:
10.1214/aos/1176344552.

Bradley Efron and Robert Tibshirani. Improvements on
Cross-Validation: The 632+ Bootstrap Method. Journal
of the American Statistical Association, 92(438):548–560,
1997. doi: 10.1080/01621459.1997.10474007.

Bradley Efron and Robert J. Tibshirani. An Introduction to
the Bootstrap. Number 57 in Monographs on Statistics
and Applied Probability. Chapman & Hall/CRC, Boca
Raton, Florida, USA, 1993.

Charles Elkan. The Foundations of Cost-Sensitive Learning.
In Proceedings of the 17th International Joint Confer-
ence on Artificial Intelligence - Volume 2, IJCAI’01, page
973–978, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc.

Alessandro Fabris, Stefano Messina, Gianmaria Silvello,
and Gian Antonio Susto. Algorithmic Fairness Datasets:
the Story so Far. Data Mining and Knowledge Discovery,
36(6):2074–2152, September 2022. doi: 10.1007/s10618-
022-00854-z.

Federal Financial Institutions Examination Coun-
cil. HMDA Data Publication, 2017. URL
https://www.consumerfinance.gov/data-
research/hmda/historic-data/. Released
due to the Home Mortgage Disclosure Act.

Jessica Zosa Forde, A. Feder Cooper, Kweku Kwegyir-
Aggrey, Chris De Sa, and Michael L. Littman. Model
Selection’s Disparate Impact in Real-World Deep Learn-
ing Applications, 2021. URL https://arxiv.org/
abs/2104.00606.

Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkata-
subramanian. On the (im)possibility of fairness, 2016.

Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkata-
subramanian, Sonam Choudhary, Evan P. Hamilton, and
Derek Roth. A Comparative Study of Fairness-Enhancing
Interventions in Machine Learning. In Proceedings of
the Conference on Fairness, Accountability, and Trans-
parency, FAT* ’19, page 329–338, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450361255. doi: 10.1145/3287560.3287589.

Lon L. Fuller. The Morality of Law. Yale University Press,
New Haven, 1965. ISBN 9780300010701.

Stuart Geman, Elie Bienenstock, and René Doursat. Neu-
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nay. Scikit-Learn: Machine Learning in Python. J. Mach.
Learn. Res., 12:2825–2830, November 2011. ISSN 1532-
4435.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg,
and Kilian Q Weinberger. On Fairness and Calibration. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Shangshu Qian, Hung Pham, Thibaud Lutellier, Zeou Hu,
Jungwon Kim, Lin Tan, Yaoliang Yu, Jiahao Chen, and
Sameena Shah. Are My Deep Learning Systems Fair?
An Empirical Study of Fixed-Seed Training. In Advances

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.census.gov/library/stories/2021/08/more-than-half-of-united-states-counties-were-smaller-in-2020-than-in-2010.html
https://www.census.gov/library/stories/2021/08/more-than-half-of-united-states-counties-were-smaller-in-2020-than-in-2010.html
https://www.census.gov/library/stories/2021/08/more-than-half-of-united-states-counties-were-smaller-in-2020-than-in-2010.html
https://www.census.gov/library/stories/2021/08/more-than-half-of-united-states-counties-were-smaller-in-2020-than-in-2010.html
https://proceedings.mlr.press/v119/marx20a.html
https://proceedings.mlr.press/v119/marx20a.html
https://msalganik.github.io/cos597E-soc555_f2020/class-materials/2020-09-03-background/limits-to-prediction-pre-read.pdf
https://msalganik.github.io/cos597E-soc555_f2020/class-materials/2020-09-03-background/limits-to-prediction-pre-read.pdf
https://msalganik.github.io/cos597E-soc555_f2020/class-materials/2020-09-03-background/limits-to-prediction-pre-read.pdf
https://msalganik.github.io/cos597E-soc555_f2020/class-materials/2020-09-03-background/limits-to-prediction-pre-read.pdf


Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

in Neural Information Processing Systems, volume 34,
Red Hook, NY, USA, 2021. Curran Associates, Inc.

Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On
Wasserstein Two Sample Testing and Related Families
of Nonparametric Tests, 2015. URL https://arxiv.
org/abs/1509.02237.

K.T. Rodolfa, H. Lamba, and R Ghani. Empirical observa-
tion of negligible fairness–accuracy trade-offs in machine
learning for public policy. Nature Machine Intelligence, 3,
2021. doi: https://doi.org/10.1038/s42256-021-00396-x.

Raymond M. Smullyan. Logicians Who Reason about
Themselves. In Proceedings of the 1986 Conference
on Theoretical Aspects of Reasoning about Knowl-
edge, TARK ’86, page 341–352, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc. ISBN
0934613049.

Robert Stalnaker. On Logics of Knowledge and Be-
lief. Philosophical Studies: An International Journal
for Philosophy in the Analytic Tradition, 128(1):169–
199, 2006. ISSN 00318116, 15730883. URL http:
//www.jstor.org/stable/4321718.

Brian Z. Tamanaha. On the Rule of Law: History, Politics,
Theory. Cambridge University Press, Cambridge, 2004.

Stefan Wager. Cross-Validation, Risk Estimation, and
Model Selection: Comment on a Paper by Rosset and
Tibshirani. Journal of the American Statistical Associa-
tion, 115(529):157–160, 2020. doi: 10.1080/01621459.
2020.1727235.

Jamelle Watson-Daniels, David C. Parkes, and Berk Us-
tun. Predictive Multiplicity in Probabilistic Classification,
2022.

I.C. Yeh and C.H. Lien. The comparisons of data mining
techniques for the predictive accuracy of probability of
default of credit card clients. Expert Systems with Appli-
cations, 36:2473–2480, 2009.

Ruqi Zhang, A Feder Cooper, and Christopher De Sa. AM-
AGOLD: Amortized Metropolis Adjustment for Efficient
Stochastic Gradient MCMC. In International Conference
on Artificial Intelligence and Statistics, 2020.

https://arxiv.org/abs/1509.02237
https://arxiv.org/abs/1509.02237
http://www.jstor.org/stable/4321718
http://www.jstor.org/stable/4321718


Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

Appendix Overview
This supplemental material goes into significantly more detail regarding the results presented in this paper. The organization
is as follows:

Appendix A: Extended Preliminaries

• A.1: Notes on notation and on our choice of terminology

• A.2: Constraints on our setup

• A.3: Costs and the classification decision threshold

• A.4: The bootstrap method

Appendix B: Additional Details on Variance and Self-Consistency

• B.1: Other statistical sources of error

• B.2: Our variance definition

• B.3: Deriving self-consistency from variance

– B.3.1: Additional details on our choice of self-consistency metric

Appendix C: Related Work and Alternative Notions of Variance

• C.1: Defining variance in relation to a “main prediction”

• C.2: Why we choose to avoid computing the main prediction

– C.2.1: The main prediction and cost-sensitive loss

Appendix D: Additional Details on Our Algorithmic Framework

• D.1: Self-consistent ensembling with abstention

Appendix E: Additional Empirical Results and Details for Reproducibility

• E.1: Hypothesis classes, datasets, and code

– E.1.1: The standalone HMDA tookit

• E.2: Cluster environment details

• E.3: Details on motivating examples in the main paper

• E.4: Validating our algorithm in practice

– E.4.1: COMPAS
– E.4.2: Old Adult
– E.4.3: South German Credit
– E.4.4: Taiwan Credit
– E.4.5: New Adult - CA
– E.4.6: HMDA
– E.4.7: Discussion of extended results for Algorithm 1

• E.5: Reliability and fairness metrics in COMPAS and South German Credit
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A. Extended Preliminaries
A.1. Notes on notation and on our choice of terminology

Terminology. Traditionally, what we term “observed labels” o are often referred to instead as the “ground truth” or “correct”
labels (Abu-Mostafa et al., 2012; Hastie et al., 2009; Kong and Dietterich, 1995, e.g.). We avoid this terminology because,
as the work on label bias has explained, these labels are often unreliable or contested (Friedler et al., 2016; Cooper and
Abrams, 2021).

Sets, random variables, and instances. We use bold non-italics letters to denote random variables (e.g., x, D), capital
block letters to denote sets (e.g., X, Y), lower case italics letters to denote scalars (e.g., o), bold italics lower case letters to
denote vectors (e.g., x), and bold italics upper case to denote matrices (e.g., Dk). For a complete example, x is an arbitrary
instance’s feature vector, X is the set representing the space of instances x (x ∈ X), and x is the random variable that can
take on specific values of x ∈ X. We use this notation consistently, and thus do not always define all symbols explicitly.

A.2. Constraints on our setup

Our setup, per our definition of the learning process (Definition 2.1) is deliberately limited to studying the effects of
variance due to changes in the underlying training dataset, with such datasets drawn from the same distribution. Of course,
variance-induced error can have other sources in the training pipeline. For example, stochastic optimization methods, such
as SGD and Adam, can cause fluctuations in test error; as, too, can choices in hyperparameter configurations (Cooper et al.,
2021b). While each of these decision points is worthy of investigation with respect to their impact on fair classification
outcomes, we aim to fix as many sources of randomness as possible in order to highlight the particular kind of arbitrariness
that we describe in Sections 1 and 3. As such, we use the Limited-memory BFGS solver and fix our hyperparameters based
on the results of an initial search (Section 5), for which we selected a search space through consulting related work such as
Chen et al. (2018).

A.3. Costs and the classification decision threshold

For reference, we provide a bit more of the basic background regarding the relationship between the classification decision
threshold τ and costs of false positives FP (C01) and false negatives FN (C10). We visualize the loss as follows:

Table 1. Confusion matrix for cost-sensitive loss ℓ, adapted from Elkan (2001).

ŷ = 0 ŷ = 1

o = 0 TN: 0 FP: C01

o = 1 FN: C10 TP: 0

0-1 loss treats the cost of different types of errors equally C01 = C10 = 1); false positives and false negatives are quantified
as equivalently bad – they are symmetric; the case for which C01 ̸= C10 is asymmetric or cost-sensitive.

Altering the asymmetric of costs shifts the classification decision threshold τ applied to the underlying regressor rDk
. We

can see this by examining the behavior of rDk
that we learn. rDk

estimates the probability of a each label given x (since
we do not learn using g), i.e., that we develop a good approximation of the distribution p(y|x). Ideally, rDk

will be similar
to the Bayes optimal classifier (for which the classification rule produces classifications y∗ that yield the smallest weighted
sum of the loss, where the weights are the probabilities of a particular label y = i for a given (x, g), i.e., sums over

p(y = i|x = x) ℓ(i, y′). (5)

For binary classification, the terms of (5) in the sum for a particular y′ yield two cases:

• i = y′: By definition, ℓ(i, y′) = 0; therefore, (5) = 0.

• i ̸= y′: By definition, ℓ(i, y′) = C01 or ℓ(i, y′) = C10. So, (5) will weight the cost by the probability p(y = i|x = x).
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We can therefore break down the Bayes optimal classifier into the following decision rule, which we hope to approximate
through learning. For an arbitrary (x, g) and Y = {0, 1},

min
(

Weighted cost of predicting positive (1) class︷ ︸︸ ︷
Probability of FP︷ ︸︸ ︷

p(y = 0|x = x)×C01 +

Probability of TP︷ ︸︸ ︷
p(y = 1|x = x)×0,

Weighted cost of predicting negative (0) class︷ ︸︸ ︷
Probability of TN︷ ︸︸ ︷

p(y = 0|x = x)×0 +

Probability of FN︷ ︸︸ ︷
p(y = 1|x = x)×C10

)
=min

( Probability of FP︷ ︸︸ ︷
p(y = 0|x = x)×C10,

Probability of FN︷ ︸︸ ︷
p(y = 1|x = x)×C10

)
That is, to predict label 1, the cost of mis-predicting 1 (i.e., the cost of a false positive FP) must be be smaller than the cost
of mis-predicting 0 (i.e, the cost of a false negative FN). In binary classification p(y|x = x) = p(y = 1|x = x) + p(y =
0|x = x) = 1. So, we can assign p(y = 1|x = x) = τ and p(y = 0|x = x) = 1− τ , and rewrite the above as

min
(
(1− τ)C01, τC10

)
. (6)

The decision boundary is the case for which both of the arguments to min in (6) are equivalent (i.e., the costs of predicting a
false positive and a false negative are equal), i.e.,

(1− τ)C01 = τC10 ⇒ τ =
C01

C01 + C10
, so,

hDk
(x) = 1[rDk

(x) ≥ τ ] =

{
1, if p(y = 1|x = x) ≥ τ = C01

C01+C10

0, otherwise.

For 0-1 loss, in which C01 = C10 = 1, τ evaluates to 1
2 . If we want to model asymmetric costs, then we need to change this

decision threshold to account for which type of error is more costly. For example, let us say that false negatives are more
costly than false positives, with C01 = 1 and C10 = 3. This leads to a threshold of 1

4 , which biases hDk
toward choosing the

(generally cheaper to predict/more conservative) positive class.

A.4. The bootstrap method

In the bootstrap method, we treat each dataset D̂k ∈ D̂ as equally likely. For each set aside test example (x, g, o), we can
approximate Err(A,D, (x, g, o)) empirically by computing

ˆErr
(
A, D̂, (x, g, o)

)
=

1

B

B∑
i=1

ℓ
(
o, ĥD̂i

(x)
)

(7)

for a concrete number of replicates B. We estimate overall error ˆErr(A, D̂) for the test set by additionally summing over
each example instance (x, g, o), which we can further delineate into ˆFPR and ˆFNR, or into group-specific ˆErrg, ˆFPRg,
and ˆFNRg by computing separate averages according to g.

The bootstrap method exhibits less variance than cross-validation, but can be biased — in particular, pessimistic — with
respect to estimating expected error. To reduce this bias, one can follow our setup in Definition 2.1, which splits into train
and test sets before resampling. For more information comparing the two methods, see Efron and Tibshirani (1997; 1993).
Further, recent work shows that, in relation to studying individual models, CV is in fact asymptotically uninformative
regarding expected error (Wager, 2020).

B. Additional Details on Variance and Self-Consistency
In this appendix, we provide more details on other types of statistical error (Appendix B.1), on variance (Appendix B.2)
and self-consistency (Appendix B.3). Following this longer presentation of our metrics, we then provide some additional
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information on other definitions of variance that have been used in work on fair classification, and contextualize issues with
these definitions that encouraged us to deviate from them in order to derive our definition of self-consistency (Appendix C).

B.1. Other statistical sources of error

Noise. Noise is traditionally understood as irreducible error; it is due to inherent randomness in the data, which cannot
be captured perfectly accurately by a deterministic decision rule hDk

. Notably, noise is an aspect of the data collection
pipeline, not the learning process (Definition 2.1). It is irreducible in the sense that it does not depend on our choice of
training procedure A or how we draw datasets for training from D, either in theory or in practice. Heteroskedastic noise
across demographic groups is often hypothesized to be a source of unfairness in machine learning (Cooper and Abrams,
2021; Chen et al., 2018). Importantly, albeit somewhat confusingly, this is commonly referred to as label bias, where “bias”
connotes discrimination, as opposed to the statistical bias that we mention here.

Unlike noise, bias and variance are traditionally understood as sources of epistemic uncertainty. These sources of error are
reducible because they are contingent on the modeling choices we make in the learning process; if we knew how to model
the task at hand more effectively, in principle, we could reduce bias and variance error.

Bias. Within the amount of reducible error, bias reflects the error associated with the chosen hypothesis class H, and is
therefore governed by decisions concerning the training procedure A in the learning process (Definition 2.1). This type of
error is persistent because it takes effect at the level of possible models in H; in expectation, all models hDk

∈ H have the
same amount of bias-induced error.

Whereas variance depends on stochasticity in the underlying training data, noise and bias error are traditionally formulated
in relation to the Bayes optimal classifier — the best possible classifier that machine learning could produce for a given
task (Geman et al., 1992; Abu-Mostafa et al., 2012; Domingos, 2000a). Since the Bayes optimal classifier is typically not
available in practice, we often cannot estimate noise or bias directly in experiments.

Of the three types of statistical error, it is only variance that seems to reflect the intuition in Figure 1 concerning the
behavior of different possible models hDk

. This is because noise is a property of the data distribution; for a learning process
(Definition 2.1), in expectation we can treat noise error as constant. Bias can similarly be treated as constant for the learning
process: It is a property of the chosen hypothesis class H, and thus is in expectation the same for each hDk

∈ H. In Figure 1,
we are keeping the data distribution constant and H constant; we are only changing the underlying subset of training data to
produce different models hDk

.

B.2. Our variance definition

We first provide a simple proof that explains the simplified version for our empirical approximation for variance in (1).

Proof. For the models {hDb
}Bb=1 that we produce, we denote Ŷ to be the multiset of their predictions on (x, g). |Ŷ| = B =

B0 +B1, where B0 and B1 represent the counts of 0 and 1-predictions, respectively. We also set the cost of false positives
to be ℓ(0, 1) = C01 and the cost of false negatives to be ℓ(1, 0) = C10.

Looking at the sum in ˆvar (i.e.,
∑

i ̸=j), each of the B0 0-predictions will get compared to the other B0 − 1 0-predictions
and to the B1 1-predictions. By the definition of ℓ, each of the B0 − 1 computations of ℓ(0, 0) evaluates to 0 and each of the
B1 computations of ℓ(0, 1) evaluates to C01. Therefore, the B0 0-predictions contribute

B0 ×
[(
0× (B0 − 1)

)
+ C01 ×B1

]
= C01B0B1

to the sum in ˆvar, and, by similar reasoning, B1 ×
[(
0 × (B1 − 1)

)
+ C10 × B0

]
= C10B0B1. It follows that the total

sum in ˆvar is ∑
i ̸=j

ℓ
(
ĥD̂i

(x), ĥD̂j
(x)

)
= (C01 + C10)B0B1. Therefore

ˆvar
(
A,D̂,(x,g)

)︷ ︸︸ ︷
1

B(B − 1)

∑
i ̸=j

ℓ
(
ĥD̂i

(x), ĥD̂j
(x)

)
=

(1)︷ ︸︸ ︷
(C01 + C10)B0B1

B(B − 1)
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The effect of τ on variance. As discussed in Appendix A.3, C01 and C10 can be related to changing τ applied to rDk
to

produce classifier hDk
. We analyze the range of minimal and maximal empirical variance by examining the behavior of

B → ∞, i.e.,

lim
B→∞

(C01 + C10)B0B1

B(B − 1)
. (8)

Minimal variance. Either B0 or B1 (exclusively, since B0 +B1 > 1) will be = 0, with the other being = B, making (8)
equivalent to

lim
B→∞

(C01 + C10)× 0

B(B − 1)
= 0, regardless of the value of C01 + C10.

Maximal variance. B0 will represent half of B, with B1 representing the other half. More particularly, B0 = B
2 and

B1 = B
2 ; or, without loss of generality, B0 = B−1

2 and B1 = B+1
2 . This means that

(C01 + C10)B0B1

B(B − 1)
=

(C01 + C10)(
B
2 )

2

B(B − 1)

(
Or, =

(C01 + C10)(
B−1
2

)(B+1
2

)

B(B − 1)

)

=
(C01 + C10)(

B2

4 )

B2 −B

(
Or, =

(C01 + C10)(
(B2−1

4
)

B(B − 1)
; it will not matter in the limit

)
=

(C01 + C10)B
2

4B2 − 4B
.

And, therefore,

lim
B→∞

(C01 + C10)B
2

4B2 − 4B
=

C01 + C10

4
. (9)

It follows analytically that variance will be in the range [0, C01+C10
4 ). However, empirically, for concrete B,

ˆvar
(
A, D̂, (x, g)

)
→ [0, C01+C10

4 + ϵ], for smaller positive ϵ as the number of models B increases. The maximal variance
will better approximate C01+C10

4 as B gets larger, but will be > C01+C10
4 . For example, for 0-1 loss C01+C10

4 = 2
4 = 0.5. For

B = 100, the maximal ˆvar
(
A, D̂, (x, g)

)
= 2×50×50

100×99 = 50
99 ≈ .505.

B.3. Deriving self-consistency from variance

In this appendix, we describe the relationship between variance (Definition 3.1) and self-consistency (Definition 3.2) in more
detail, and show that ŜC

(
A, {Db}Bb=1, (x, g)

)
→ [0.5− ϵ, 1] for small positive ϵ as the number of models B increases.

Proof. Note that, by the definition of 0-1 loss, C01 = C10 = 1, so

ˆvar
(
A, D̂, (x, g)

)
0-1 =

1

B(B − 1)

∑
i̸=j

1[hDi
(x) ̸= hDj

(x)] =
2B0B1

B(B − 1)
. (10)

By the definition of of the indicator function 1,

1 =
1

B(B − 1)

∑
i ̸=j

[ From ˆvar
(
A,D̂,(x,g)

)
0-1︷ ︸︸ ︷

1[hDi
(x) ̸= hDj

(x)] +

From ŜC
(
A,{D̂b}B

b=1,(x,g)
)︷ ︸︸ ︷

1[hDi
(x) = hDj

(x)]
]

=

(10)︷ ︸︸ ︷
2B0B1

B(B − 1)
+

1

B(B − 1)

∑
i ̸=j

1[hDi(x) = hDj (x)]. Therefore, rearranging



Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

ŜC
(
A, D̂, (x, g)

)
=

1

B(B − 1)

∑
i ̸=j

1[hDi(x) = hDj (x)] = 1− 2B0B1

B(B − 1)
.

We note that ŜC (2) is independent of specific costs C01 and C10. Nevertheless, the choice of decision threshold τ will of
course impact the values of B0 and B1 in practice. In turn, this will impact the degree of self-consistency that a learning
process exhibits empirically. In short, the measured degree of self-consistency in practice will depend on the choice of ℓ.
Further, following an analysis similar to what we can show that ŜC will be a value in [0.5 + ϵ, 1], for small positive ϵ. This
reality is reflected in the results that we report for our experiments, for which B = 101 yields minimal ŜC ≈ 0.495.

Cost-independence of self-consistency Intuitively, self -consistency of a learning process is a relative metric; it is a
quantity that is measured relative to the learning process. We therefore conceive of it as a metric that is normalized with
respect to the learning process (Definition 2.1). Such a process can be maximally 100% self-consistent, but it does not make
sense for it to be more than that (reflected by the maximum value of 1).

In contrast, as discussed in Appendix B, variance can measure much greater than 1, depending on the magnitude of the sum
of the costs C01 and C10, in particular, for C01 + C10 > 4 (9). However, it is not necessarily meaningful to compare the
magnitude of variance across classifiers. Recall that the effect of changing costs C01 and C10 corresponds to a change in the
binary classification decision threshold, with τ = C01

C01+C10
. It is the relative costs that change the decision threshold; not

the costs themselves. For example, the classifier with costs C01 = 1 and C10 = 3 is equivalent to the classifier with costs
C01 = 1

2 and C10 = 3
2 (for both, τ = 1

4 ), but the former would measure a larger magnitude for variance.

It is this observation that grounds our cost-independent definition of self-consistency in Section 3 and Appendix B.3.
Given the fact that the magnitude of variance measurements can complicate our comparisons of classifiers, as discussed
above, we focus on the part of variance that encodes information about arbitrariness in a learning process: its measure
of (dis)agreement between classification decisions that result from changing the training dataset. We could alternatively
conceive of self-consistency as the additive inverse of normalized variance, but this is more complicated because it would

require a computation that depends on the specific costs, ˆvar
(
A, D̂, (x, g)

)
normalized =

ˆvar
(
A,D̂,(x,g)

)
ˆvar
(
A,D̂,(x,g)

)
max

.

B.3.1. ADDITIONAL DETAILS ON OUR CHOICE OF SELF-CONSISTENCY METRIC

Terminology. In logic, the idea of consistent belief has to do with ensuring that we do not draw conclusions that contradcit
each other. This is much like the case that we are modeling with self-consistency — the idea that underlying changes in the
dataset can lead to predictions that are directly in contradition (Smullyan, 1986; Hintikka, 1962; Stalnaker, 2006). Ideas
of consistency in legal rules have a similar flavor; legal rules should not contradict each other; legal judgments should
not contradict each other (this is at least an aspiration for the law, based on common ideas in legal theory (Fuller, 1965;
Tamanaha, 2004). For both of these reasons, the term “consistent” has a natural mapping to our usage of it in this paper.
This is especially true in the legal theory case, given that inconsistency in the law is often considered arbitrary and a source
of discrimination.

We nevertheless realize that the word “consistent” is overloaded with many meanings in statistics and different subfields
computer science like distributed computing (Zhang et al., 2020; Abadi, 2012, e.g.,). Nevertheless, due to the clear
relationship between our purposes concerning arbitrariness and discrimination, and definitions in logic and the law, we
believe that it is the most appropriate term for our work.

Quantifying systematic arbitrariness. We depict systematic arbitrariness using the Wasserstein-1 distance (Ramdas
et al., 2015). This is the natural distance for us to consider because it has a closed form when being applied to CDFs.
For our purposes, it should be interpreted as computing the total disparity in self-consistency by examining all possible
self-consistency levels κ at once.

Formally, for two groups g = 0 and g = 1 with respective SC CDFs F0 and F1,

W1 =

∫
R
|F0(κ)− F1(κ)| dκ.
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For self-consistency, which we have defined on [0.5, 1], this is just

W1 =

∫ 1

0.5

|F0(κ)− F1(κ)| dκ.

Empirically, we can approximate this with

Ŵ1 :=
1

|K̂|

∑
K̂

|F̂0(κ̂)− F̂1(κ̂)|, where K̂ =

{
1− 2B0B1

B(B − 1)

∣∣∣∣B0 ∈ {0 . . . B} ∧B1 ∈ {0 . . . B} ∧B0 +B1 = B

}
.

We typically set B = 101, and thus

K̂ = [0.49505, 0.49545, 0.49624, 0.49743, 0.49901, 0.50099, 0.50337, 0.50614, 0.50931, 0.51287, 0.51683, 0.52119,

0.52594, 0.53109, 0.53663, 0.54257, 0.54891, 0.55564, 0.56277, 0.57030, 0.57822, 0.58653, 0.59525, 0.60436,

0.61386, 0.62376, 0.63406, 0.64475, 0.65584, 0.66733, 0.67921, 0.69149, 0.70416, 0.71723, 0.73069, 0.74455,

0.75881, 0.77347, 0.78851, 0.80396, 0.81980, 0.83604, 0.85267, 0.86970, 0.88713, 0.90495, 0.92317, 0.94178,

0.96079, 0.9802, 1.0],

which we use to produce our CDF plots.

When measuring systematic arbitrariness with abstention, we set the probability mass for < κ to 0 it. This makes sense
because we are effectively re-defining the ŜC CDFs to not include instances that exhibit below a minimal amount of ŜC.
This also makes comparing systematic arbitrariness across CDFs for different interventions more interpretable. It allows us
to keep the number of empirical samples for the empirical CDF measures constant when computing averages, so abstaining
would then always have the effect of decreasing systematic arbitrariness. If we did not do this, because the Wasserstein-1
distance is an average, changing the set K̂, of course, would change the amount of Wasserstein-1 distance — possibly
leading to a relative increase (if there are greater discrepancies between g-condition CDF curves at ≥ κ).

C. Related Work and Alternative Notions of Variance
As noted in Section 6, prior work that discusses variance and fair classification often relies on the definition of variance from
Domingos (2000a). We deviate from prior work and provide our own definition for two reasons: 1) variance in Domingos
(2000a;b) does not cleanly extend to cost-sensitive loss, and 2) the reference point for measuring variance in Domingos
(2000a;b) — the main prediction — can be unstable/ brittle in practice. We start by explaining the Domingos (2000a;b)
definitions, and then use these definitions to support our rationale.

C.1. Defining variance in relation to a “main prediction”

To begin, we restate the definitions from Domingos (2000a;b) concerning the expected model (called the main predictor).
We change the notation from Domingos to align with our own, as we believe these changes provide greater clarity concerning
meaning, significance, and consequent takeaways. Nevertheless, these definitions for quantifying error are equivalent to
those in Domingos (2000b), and they fundamentally depend on human decisions for setting up the learning process.

Domingos (2000a;b) define predictive variance in relation to this single point of reference. This reference point captures the
general, expected behavior of models that could be produced by the chosen learning process. We can think of each prediction
of this point of reference as the “central tendency” of the predictions made by all possible models in µ for (x, g). Formally,
Definition C.1. The main prediction ŷ is the prediction value y′ ∈ Y that generates the minimum average loss with respect
to all of the predictions ŷ ∈ Ŷ generated by the different possible models in µ. It is defined as the expectation over training
sets D for a loss function ℓ, given an example instance (x, g). That is,

y = argmin
y′

ED[ℓ(ŷ, y′)|x = x,g = g]. (11)
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The main predictor h : X → Y produces the main prediction y for each (x, g).

What (11) evaluates to in practice of course depends on the loss function ℓ. For squared loss, the main prediction is defined
as the mean prediction of all the hDk

(Domingos, 2000a; Kong and Dietterich, 1995). Following Kong and Dietterich
(1995), for 0-1 loss Domingos (2000a) defines the main prediction as the mode/majority vote — the most frequent prediction
for an example instance (x, g). We provide a more formal discussion of why this is the case when we discuss problems with
the main prediction for cost-sensitive loss (Appendix C.2). Domingos (2000a;b) then define variance in relation to specific
models hDk

and the main predictor h:
Definition C.2. The variance-induced error for fresh example instance (x, g) is

var
(
A,D, (x, g)

)
= ED[ℓ(y, ŷ)|x = x,g = g],

where y = h(x) is the main prediction and the ŷ are the predictions for the different hDk
∼ µ.

That is, for a specific (x, g), it is possible to compare the individual predictions ŷ = hDk
(x) to the main prediction

y = h(x). Using the main prediction as a reference point, one can compute the extent of disagreement of individual
predictions with the main prediction as a source of error. It is this definition (Definition C.2) that prior work on fair
classification tends to reference when discussing variance (Chen et al., 2018; Black et al., 2022a). However, as we discuss in
more detail below (Appendix C.2), many of the theoretical results in Chen et al. (2018) follow directly from the definitions
in Domingos (2000a), and the empirical work does not actually use those results in practice. Black et al. (2022a), in contrast,
presents results that rely heavily on the main prediction in Domingos (2000a).

C.2. Why we choose to avoid computing the main prediction

We now compare our definition of variance (Definition 3.1) to the one in Domingos (2000a;b) (Definition C.2). This
comparison makes clear in detail why we deviate from prior work that relies on Domingos (2000a;b).

No decomposition result. Following from above, it is worth noting that by not relying on the main prediction, we lose the
applicability of the decomposition result that Domingos (2000a;b) develop. However, we believe that this is fine for our
purposes, as we are interested in the impact of empirical variance specifically on fair classification outcomes. We do not
need to reason about bias or noise in our results to understand the arbitrariness with which we are concerned (Section 3.1).
It is also worth noting that prior work on fair classification that leverages Domingos (2000a) also does not leverage the
decomposition, either. Chen et al. (2018) extends the decomposition to subgroups in the context of algorithmic fairness,9

and then informally translates the takeaways of the Domingos (2000a) result to a notion of a “level of discrimination.”
Moreoever, unlike our work, these prior studies do not actually measure variance directly in its experiments.

No need to compute a “central tendency”. In Domingos (2000a;b), variance is defined in terms of both the loss function
ℓ and the main prediction y. This assumes that the main prediction is well-defined for the loss function, and that it is
well-behaved. While there is a simple interpretation of the main prediction for squared loss (the mean) and for 0-1 loss (the
mode/majority vote), it is significantly messier for cost-sensitive loss, which is a more general formulation that includes 0-1
loss. Domingos (2000a;b) does not discuss this explicitly, so we derive the main prediction for cost-sensitive loss ourselves
below. In summary:

• The behavior of the main prediction for cost-sensitive loss reveals that the decomposition result provided in the extended
technical report (Theorem 4, Domingos (2000b)) is in fact very carefully constructed. We believe that this construction
is so specific that it is not practically useful (it is, in our opinion, hardly “unified” in a more general sense, as it is so
carefully adapted to specific loss functions and their behavioral special cases).

• By decoupling from the need to compute a main prediction as a reference point, our variance definition is ultimately
much simpler and more general, with respect to how it accommodates different loss functions.10

9This just involves splitting the conditioning on an example instance of features x into conditioning on an example instance whose
features are split into (x, g).

10This reveals a subtle ambiguity in the definition of the loss ℓ in Domingos (2000a;b). Neither paper explicitly defines the signature of
ℓ. For the main prediction (Definition C.1) and variance (Definition C.2), there is a lack of clarity in what constitutes a valid domain for
ℓ. Computing the main prediction y suggests ℓ : Y× Y → R≥0, where y ∈ Y, but, since Ŷ ⊆ Y, it is possible that y ̸∈ Y. However,
the definition of variance suggests that ℓ : Y× Ŷ→ R≥0. Since Ŷ ⊆ Y, it is not guaranteed that Ŷ = Y. This may be fine in practice,
especially for squared loss and 0-1 loss (the losses with which Domingos (2000a) explicitly contends), but it does arguably present a
problem formally with respect to generalizing.



Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

Brittleness of the main prediction. For high variance instances, the main prediction can flip-flop from ŷ = 1 to ŷ = 0
and back. While the strategy in Black et al. (2022a) is to abstain on the prediction in these cases, we believe that a better
alternative is to understand that the main prediction is not very meaningful more generally for high-variance examples. That
is, for these examples, the ability (and reliability) of breaking close ties to determine the main (simple majority) prediction is
not the right approach. Instead, we should ideally be able to embed more confidence into our process than a simple-majority-
vote determination.11 Put different, in cases for which we can reliably estimate the main prediction, but the vote margin
is slim, we believe that the main prediction is still uncertain, based on our understanding of variance, intuited in Figure 1.
The main prediction can be reliable, but it can still, in this view, be arbitrary (Section 6). With a simple-majority voting
scheme, there can be huge differences between predictions that are mostly in agreement, and those that are just over the
majority reference point. Freeing ourselves of this reference point via our self-consistency metric, we can define thresholds
of self-consistency as our criterion for abstention (where simple-majority voting is one instantiation of that criterion).12

C.2.1. THE MAIN PREDICTION AND COST-SENSITIVE LOSS

We show here that, for cost-sensitive loss, the main prediction depends on the majority class being predicted, the asymmetry
of the costs, and occasional tie-breaking, such that the main prediction can either be the majority vote or the minority vote.
Domingos (2000b) provides an error decomposition in Theorem 4, but does not explain the effects on the main prediction.
We do so below, and also call attention to 0-1 loss as a special case of cost-sensitive loss, for which the costs are symmetric
(and equal to 1). We first summarize the takeaways of the analysis below:

• Symmetric loss: The main prediction is the majority vote.

• Asymmetric loss: Compute 1) the relative cost difference (i.e., C01−C10
C10

), 2) the majority class (and, as a result, the
minority class) for the ŷ ∈ Ŷ, and 3) the relative difference in the number of votes in the majority and minority classes
(i.e., what we call the vote margin; below, (i+2j+1)−i

i )

– If the majority class in Ŷ has the lower cost of misclassification, then the main prediction is the majority vote.
– If the majority class in Ŷ has the higher cost of misclassification, then the main prediction depends on the

asymmetry of the costs and the vote margin, i.e.,

* If C01−C10
C10

= (i+2j+1)−i
i , we can choose the main prediction to be either class (but must make this choice

consistently).

* If C01−C10
C10

> (i+2j+1)−i
i , the minority vote is the main prediction.

* If C01−C10
C10

< (i+2j+1)−i
i , the majority vote is the main prediction.

Proof. Let us consider cost-sensitive loss for binary classification, for which ℓ(0, 0) = ℓ(1, 1) = 0 and we have potentially-
asymmetric loss for misclassifications, i.e. ℓ(1, 0) = C10 and ℓ(0, 1) = C01, with C01, C10 ∈ R+. 0-1 loss is a special case
for this type of loss, for which C01 = C10 = 1.

Let us say that the total number of models trained is k, which we evaluate on an example instance x. Let us set |Ŷ| = k =
2i+ 2j + 1, with i ≥ 0 and j ≥ 0. We can think of i as the common number of votes that each class has, and 2j + 1 as the
margin of votes between the two classes. Given this setup, this means that k ≥ 1, i.e., we always have the predictions of at
least 1 model to consider, and k is always odd. This means that there is always a strict majority classification.

Without loss of generality, on x, of these k model predictions ŷ ∈ Ŷ , there are i class-0 predictions and i+ 2j + 1 class-1
predictions (i.e., we do our analysis with class 1 as the majority prediction). To compute the main prediction y, each ŷ ∈ Ŷ
will get compared to the values of possible predictions y′ ∈ Y = {0, 1}. That is, there are two cases to consider:

• Case y′ = 0: y′ = 0 will get compared i times to the i ŷ = 0s in Ŷ, for which ℓ(0, 0) = 0; y′ = 0 will similarly
get compared i + 2j + 1 times to the 1s in in Ŷ, for which (by Definition C.1) the comparison is ℓ(1, 0) = C10. By

11This is also another aspect of the simplicity of not needing to define and compute a “central tendency” prediction. We do not need to
encode a notion of a tie-breaking vote to determine a “central tendency.” The main prediction can be unclear in cases for which there is no
“main outcome” (e.g., Individual 2 in Figure 1), as the vote is split exactly down the middle. By avoiding the need to vote on a main
reference point, we also avoid having to ever choose that reference point arbitrarily.

12This problem is worse for cost-sensitive loss, where the main prediction is not always the majority vote (Appendix C.2.1).
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definition of expectation, the expected loss is

i× 0 + (i+ 2j + 1)× C10

2i+ 2j + 1
=

C10(i+ 2j + 1)

2i+ 2j + 1
. (12)

• Case y′ = 1: Similarly, the label 1 will also get compared i times to the 0s in Ŷ, for which the comparison is
ℓ(0, 1) = C01; y′ = 1 will also be compared i+ 2j + 1 times to the 1s in Ŷ, for which ℓ(1, 1) = 0. The expected loss is

i× C01 + (i+ 2j + 1)× 0

2i+ 2j + 1
=

C01i

2i+ 2j + 1
. (13)

We need to compare these two cases for different possible values of C10 and C01 to understand which expected loss is minimal,
which will determine the main prediction y that satisfies Equation (11). The three different possible relationships for values
of C10 and C01 are C10 = C01 (symmetric loss), and C10 > C01 and C10 < C01 (asymmetric loss). Since the results of the
two cases above share the same denominator, we just need to compare their numerators, C10(i+ 2j + 1) (12) and C01i (13).

Symmetric Loss (0-1 Loss). When C10 = C01 = 1, the numerators in (12) and (13) yield expected losses i + 2j + 1
and i, respectively. We can rewrite the numerator for (13) as

i+

≥1, given j ≥ 0︷ ︸︸ ︷
2j + 1 ≥ i+ 1,

which makes the comparison of numerators i < i + 1, i.e., we are in the case (13) < (12). This means that the case of
y′ = 1 (13) is the minimal one; the expected loss for class 1, the most frequent class, is the minimum, and thus the most
frequent/ majority vote class is the main prediction. An analogous result holds if we instead set the most frequent class
to be 0. More generally, this holds for all symmetric losses, for which C10 = C01.

▶ For symmetric losses, the main prediction y is majority vote of the predictions in Ŷ.

Asymmetric Loss. For asymmetric/ cost-sensitive loss, we need to examine two sub-cases: C10 > C01 and C10 < C01.

• Case C10 > C01: C01i < C10(i+

≥1︷ ︸︸ ︷
2j + 1), given that j ≥ 0. Therefore, since C01i is minimal and associated with class

1 (the most frequent class in our setup), the majority vote is the main prediction. We can achieve an analogous result
if we instead set 0 as the majority class.

▶ For asymmetric losses, the main prediction y is the majority vote of the predictions in Ŷ, if the majority class

has a cheaper cost associated with misclassification (i.e., if the majority class is 1 and C10 < C01, or if the majority
class is 0 and C01 < C10).

• Case C10 < C01: If C10 < C10, it depends on how asymmetric the costs are and how large the vote margin (i.e., 2j + 1)
between class votes is. There are 3 sub-cases:

– Case C01i = C10(i + 2j + 1), i.e. cost equality: We can look at the relative asymmetric cost difference of the
minority class cost (above C01, without loss of generality) and the majority class cost (above C10, without loss
of generality), (above C01−C10

C10
, without loss of generality). If that relative cost difference is equal to the relative

difference of the votes between the majority and minority classes (i.e., (i+2j+1)−i
i ), then the costs of predicting
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either 1 or 0 are equal. That is, we can rearrange terms as a ratio of costs to votes:

C01i = C10(i+

≥1︷ ︸︸ ︷
2j + 1) (The terms in this equality are > 0)

C01

C10
=

i+ 2j + 1

i
(Given the above, C01i > 0 so i > 0)

= 1 +
2j + 1

i
C01

C10
− 1 =

2j + 1

i

C01 − C10

C10
=

2j + 1

i
=

(i+ 2j + 1)− i

i
≥ 1

i
(14)

▶ For asymmetric loss when the majority-class-associated cost is less than the minority-class associated cost

and if the expected losses are equal, then the main prediction y is either 1 or 0, (and we must make this choice
consistently).

– Case C01i > C10(i + 2j + 1): We can look at the relative asymmetric cost difference of the minority class cost
(above C01, without loss of generality) and the majority class cost (above C10, without loss of generality), (above
C01−C10

C10
, without loss of generality). If that relative cost difference is greater than the relative difference of the votes

between the majority and minority classes (i.e., (i+2j+1)−i
i ), then the minority vote yields the minimum cost and

is the main prediction y (above y = 0, without loss of generality; an analogous result holds if we had set the majority
vote to be 0 and the minority vote to be 1). Following (14) above, this is the same as

C01 − C10

C10
>

(i+ 2j + 1)− i

i

▶ For asymmetric loss when the majority-class-associated cost is less than the minority-class associated cost,

it is possible for the minority class to have a greater associated loss. In this case, the minority vote is the main
prediction y.

– Case C01i < C10(i + 2j + 1): We can look at the relative asymmetric cost difference of the minority class cost
(above C01, without loss of generality) and the majority class cost (above C10, without loss of generality), (above
C01−C10

C10
, without loss of generality). If that relative cost difference s less than the relative difference of the votes

between the majority and minority classes (i.e., (i+2j+1)−i
i ), then the majority vote yields to minimum cost and

is the main prediction y (above y = 1, without loss of generality; an analogous result holds if we had set the majority
vote to be 0 and the minority vote to be 1). Following (14) above, this is the same as

C01 − C10

C10
<

(i+ 2j + 1)− i

i

▶ For asymmetric loss when the majority-class-associated cost is less than the minority-class associated cost,

it is possible for the majority class to have a greater associated loss. In this case, the majority vote is the main
prediction y.
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D. Additional Details on Our Algorithmic Framework
A natural question is to see if we can improve self-consistency, with the hope that doing so would reduce arbitrariness in the
learning process, improve accuracy, and, for the cases in which there is different self-consistency across subgroups, also
perhaps improve fairness. To do so, we consider ways of reducing variance, as, based on our definitions (Definition 3.1
and 3.2), doing so should improve self-consistency.

We consider the classic bootstrap aggregation — or, bagging — algorithm (Breiman, 1996) as a starting point. It has been
well-known since Breiman (1996) that bagging can improve the performance of unstable predictors. That is, for models
produced by a learning process that is sensitive to the underlying training data, it is (theoretically-grounded) good practice
to train an ensemble of models using bootstrapping (Appendix A.4; Efron (1979); Efron and Tibshirani (1993)). When
classifying an example instance, we then leverage the whole ensemble by aggregating the predictions produced by its
members. This aggregation process identifies the most common prediction in the ensemble, and returns that label as the
classification. Put differently, we have combined the information of a lot of unstable classifiers, and averaged over their
behavior in order to generate more stable classifications.

Given the the relationship between variance (Definition 3.1) and self-consistency (Definition 3.2), reducing variance will
improve self-consistency. However, rather than relying on a simple-majority-vote to decide the aggregated prediction,
we also will instill a notion of confidence in our predictions by requiring a minimum level of self-consistency, which is
described in Algorithm 1.

D.1. Self-consistent ensembling with abstention

We present a framework that alters the semantics of classification outputs to 0, 1, and Abstain, and employ ensembling to
determine the ŜC-level that guides the output process. Algorithm 1 suggests many possible ways that this can be achieved.
For example, we can change the aggregation rule in regular bagging to use a self-consistency level κ rather than majority
vote. Instead of relying on votes, we can bag the underlying prediction probabilities and then apply κ a filter. We could take
the top-n most consistent predictions and let a super-ensemble of underlying bagged classifiers decide whether to abstain or
predict.

In the experiments in the paper, we provide two examples: Changing the underlying bagging vote aggregation rule (simple
ensembling), and applying a round of regular bagging to do variance reduction and then bagging the bagged outputs (super
ensembling) to apply a self-consistency threshold. Our ensemble model will not produce predictions for examples for which
the lack of self-consistency is too high. We describe our procedure more formally in Algorithm 1.

Simple proof that abstention improves self-consistency (by construction). We briefly show the simple proof that any
method that meets the semantics of Algorithm 1 will be more self-consistent than its counterpart that cannot Abstain.

We define abstentions to be in agreement with both 0 and 1 predictions. This makes sense intuitively: Algorithm 1 abstains
to avoid making predictions that lack self-consistency, so abstaining should not increase disagreement between predictions.

It follows that we can continue to use Definition 3.2 and associated empirical approximations ŜC (3), but with one small
adjustment. Instead of the total number of predictions B = B0 +B1, with B0 and B1 corresponding to 0 and 1 predictions,
respectively, we now allow for B ≥ B0 +B1, in order to account for possibly some non-zero number of abstentions.

In more detail, let us denote Ŷ to be the multiset of predictions for models hD1
, hD2

, . . . , hDB
on (x, g), with |Ŷ| = B =

B0 + B1 + BAbstain. This is where we depart from our typical definition of self-consistency, for which B = B0 + B1

(Section 3, Appendix B.3). We continue to let B0 and B1 represent the counts of 0 and 1 predictions, respectively, and now
include BAbstain to denote the (possibly nonzero) number of abstentions. This leads to the following adjustment of (3):

ŜC
(
A, {D̂b}Bb=1, (x, g)

)
= 1− 2(B0B1 +B0BAbstain +B1BAbstain)

B(B − 1)
. (15)

Equation (15) follows from a similar analysis of comparing 0s, 1s, and abstentions for Definition 3.2, which lead us to derive
(3) in Appendix B.3. However, since the costs of 0-to-Abstain comparisons and 1-to-Abstain comparisons are both 0,
the B0BAbstain and B1BAbstain terms in (15) reduce to 0. As a result, we yield our original definition for self-consistency
(3), with the possibility that B = B0 +B1 +BAbstain > B0 +B1, if there is a nonzero number of abstentions BAbstain.

Since B > 1 and B0, B1, BAbstain ≥ 0, it is always the case that option to Abstain is at least as self-consistent as not
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having the option to do so. This follows from the fact that B0 +B1 +BAbstain = B ≥ B0 +B1, which would make the
denominator in (15) greater than or equal to the corresponding method that cannot Abstain; when subtracted from 1, this
would produce a ŜC that is no smaller than the value for the corresponding method without that cannot Abstain.

Now, it follows that, given the choice between Abstain and predicting a label that is in disagreement with an existing
prediction label, choosing to Abstain will always lead to higher self-consistency. This is because the cost to Abstain is
less than disagreeing, so it will always be the minimal choice that maximizes ŜC.

Error and the abstention set. It is very straightforward to see that the abstention set will generally exhibit higher than
the prediction set. When we ensemble and measure ŜC, the exmaples that exhibit low ŜC contain higher variance-induced
error. Let us call the size of the abstention set U (which incurs error u), the size of the prediction set V (which incurs
error v), and the size of the test set T (which incurs error t). We can relate the total number of misclassified examples
as T ∗ t = U ∗ u + V ∗ v, with T = U + V . If we assume the bias and noise are equally distributed across the test and
abstention sets (this is a reasonable assumption, on average, in our setup), then splitting off the high variance instances from
the low variance (high ŜC instances) requires that u > v. The error on the abstention set necessarily has to be larger than the
error on the prediction set, in order to retain the above relationship.

E. Additional Empirical Results and Details for Reproducibility
The code for the examples in Sections 1, 3 and 5 can be found in https://github.com/pasta41/variance.
This repository also contains necessary and sufficient information concerning reproducibility. At the time of writing, we
use Conda to produce environments with associated package-versioning information, so that our results can be exactly
replicated and independently verified. We also use the Scikit-Learn (Pedregosa et al., 2011) toolkit for modeling and
optimization. More details on our choice of models and hyperparameter optimization can be found in our code repository,
cited above. In brief, we consulted prior related work (e.g., Chen et al. (2018)) and performed our own validation for
reasonable hyperparameters per model type. We keep these settings fixed to reduce impact on our results, in order to observe
in isolation how different training data subsets impact our results.

During these early runs, we collected information on train accuracy, not just test accuracy; while models ultimately have simi-
lar test accuracy in most cases for the same task, they can vary significantly in terms of train accuracy (e.g., for logistic regres-
sion, COMPAS is in the low .70s; for random forests, it is in the mid .90s). We do not include these results for the sake of space.

This section is organized as follows. We first present information on our datasets, models and code, including our HDMA
toolkit (Appendix E.1). We then provide details on our setup for running experiments on our cluster (Appendix E.2).
Appendix E.3 contains more detailed information concerning the experiments performed to produce Figures 1 and 2 in
the main paper. In Appendix E.4, we provide more details on the results presented in Section 5, as well as additional
experiments. Lastly, in ppendix E.5, we discuss implications of these results for common fairness Abenchmarks like South
German Credit. We conclude that in many cases, without adequate attention to error estimation, it is likely that training
and post-processing a single model for fairness on these models likely is a brittle approach to achieve generalizable fairness
(and accuracy) performance. Based on our empirical results, it seems like high variance can be a significant confounding
factor when using a small set of models to draw conclusions about performance — whether fairness or accuracy. There is an
urgent need for future work concerning reproducibility. More specifically, our results indicate that it would be useful to
revisit key algorithmic strategies in fair classification to see how they perform in context with more reliable expected error
estimation and variance reduction.

Note on CDF figures. We show our results in terms of the ŜC of the underlying bagged models because doing so conveys
how Algorithm 1 makes decisions to predict or abstain.13 For both types of ensembling, Algorithm 1 predicts for all
examples captured by the area to the right of the κ reference line, and abstains for all examples on the left.

It is also worth noting (though hopefully obvious) that our CDF plots of ŜC are not continuous, yet we choose to plot them as
interpolated curves. This are discrete because we train a concrete number of models (individual models or bags) — typically
101 of them — that we treat as our approximation for B when computing ŜC. This means that there are a finite number of
κ-values for ŜC, for which we plot a corresponding concrete number of heights y corresponding to the cumulative proportion
of the test set. In this respect, it would perhaps be more precise to plot our curves using a step function, exemplified below
(see Appendix B.3.1 for the values in K̂):

13The ŜC CDF of Algorithm 1, computed via a third round of bootstrapping, has nearly all mass at ŜC = 1; it is difficult to visualize.

https://github.com/pasta41/variance
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Figure 6. Plotting ŜC with an emphasis on discrete levels κ.

We opted not to do this for two reasons. First, plotting steps for some of our figures, in our opinion, can make the figures
more difficult to understand. Second, in experiments for which we increase the number of models used to estimate ŜC (e.g.,
Appendix E.5), we found that the curves for 101 models were a reasonable approximation of the overall CDF. We therefore
concluded that plotting the figures without steps was worth the clarity of presentation, with a sacrifice in correctness for the
overall takeaways that we intend with these figures.

A remark on cost. It can be considerably more computationally intensive to train an ensemble of models to compute ŜC
than to train a handful of models and perform cross-validation, as is the standard practice in fair classification. However, as
our empirical analysis demonstrates, this cost comes with a huge benefit: It enables us to improve self-consistency and to
root out the arbitrariness of producing predictions that are effectively close-to-random, which is especially important in
high-stakes fairness settings (Cooper et al., 2021a). Moreover, for common fair classification datasets, the increased cost on
modern hardware is relatively small; (super-) ensembling with confidence takes under an hour to execute (Appendix E.4).

E.1. Hypothesis classes, datasets, and code

Models. According to a comprehensive recent survey study (Fabris et al., 2022), as well as related work like Chen et al.
(2018), we conclude that some of the most common models used in fair classification are logistic regression, decision tree
classifiers, random forest classifiers, SVMs, and MLPs. We opted to include comprehensive results for the first three, since
they capture different complexities, and therefore encode different degrees of statistical bias, that we expected to have an
impact on the underlying sources of error. We provide some results for SVMs and MLPs, which we include in this Appendix.
Since we choose not to use stochastic optimizers to reduce the sources of randomness, for our results, training MLPs is slower
than it could be. We consistently use a decision threshold of 0.5 (i.e., 0-1 loss) for our experiments, though our results can
easily be extended to other thresholds, as discussed in Section 3. Depending on the dataset, we reserve between 20% and 30%
of the available data for the test set. This is consistent with standard fair classification training settings, which we validated
during our initial experiments to explore the space (for which we also did preliminary hyperparameter optimization, before
fixing the hyperparameters for our presented results). Please refer to https://github.com/pasta41/variance
for more details.

Datasets. Also according to Fabris et al. (2022), the most common tasks in fair classification are Old Adult (Kohavi,
1996), COMPAS (Larson et al., 2016), and South German Credit (Grömping, 2019).14 These three datasets arguably
serve as a de facto benchmark in the community, so we felt the need to include them in the present work. In recognition of
the fact that these three datasets, however standard, have problems, we also run experiments on 3 tasks in the New Adult
dataset, introduced by Ding et al. (2021) to replace Old Adult. We subset to the CA (California) subset of the dataset, and
run on Income, Employment, and Public Coverage, and consider sex and race as protected attributes, which we
binarize into {Male, Female} and {White, Non-white}. These are all large-scale tasks, at least in the domain of algorithmic
fairness — on the order of hundreds of thousands of example instances. However, the 3 tasks do share example instances
and some features. In summary, concerning common tasks in fair classification:

• COMPAS (Larson et al., 2016). We run on the commonly-used version of this dataset from Friedler et al. (2019), which
has 6167 example instances with 404 features. The target is to predict recidivism within 2 years (1 corresponding to
Yes, and 0 to No). The protected attribute is race, binarized into “Non-white” (0) and “White” (1) subgroups.

• Old Adult (Kohavi, 1996). We run on the commonly-used version of this dataset from Friedler et al. (2019), which

14Technically, Grömping (2019) is an updated and corrected version of the dataset from 2019.

https://github.com/pasta41/variance
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has 30,162 examples with 97 features. This version of the dataset removes instances with missing values from the
original dataset, and changes the encoding of some of the features (Kohavi (1996) has 48842 example instnaces with
88 features). The target is to predict < $50, 000 income (0) >= $50, 000 income (1). The protected attribute is sex,
binarized into “Female” (0) and “Male” (1) subgroups.

• South German Credit (Grömping, 2019). We download the dataset from UCI and process the data ourselves.
We use the provided codetable.txt to “translate” the features from German to English. We say “translate” because
the authors took some liberties, e.g., the column converted to “credit history” is labeled “moral” in the German, which
is not a translation. There are four categories in the protected attribute “personal status sex” column, one of which (2)
is used for both “Male (single)” and “Female (non-single).” We therefore remove rows with this value, and binarize the
remaining three categories into “Female” (0) and “Male” (1). What results is a dataset with 690 example instances (of
the original 1000) with 19 features. The target is “good” credit (1) and “bad” credit (0).

• Taiwan Credit (Yeh and Lien, 2009). This task is to predict default on credit card payments (1) or not (0). There
are 30,000 example instances and 24 features. The protected attribute is binary sex. We download this dataset from
UCI.

• New Adult (Ding et al., 2021). This dataset contains millions of example instances from US Census data, which can
be used for several different targets/tasks. We select three of them (listed below). These tasks share some features, and
therefore are not completely independent. Further, given the size of the whole dataset, we subset to CA (California),
the most populous state in the US. There are two protected attribute columns that we use: sex, which is binarized
“Female” (0) and “Male” (1) subgroups, and race, which we binarize into “Non-white” (0) and “White” (1). In future
work, we would like to explore extending our results beyond binary subgroups.

– Income. This task is designed to be analogous to Old Adult (Kohavi, 1996). As a result, the target is to
predict < $50, 000 income (0) >= $50, 000 income (1). In the CA subset, there are 195,665 example instances
with 8 features.

– Employment. This task is to predict whether an individual is employed (1) or not (0). In the CA subset, there
are 378,817 example instances with 14 features.

– Public Coverage. This task is to predict whether an individual is on public health insurance (1) or not (0).
In the CA subset, there are 138,554 example instances with 17 features.

E.1.1. THE STANDALONE HMDA TOOKIT

In addition to the above standard tasks, we include experiments that use the NY and TX 2017 subsets of the the Home
Mortgage Data Disclosure Act (HMDA) 2007-2017 dataset (Federal Financial Institutions Examination Council, 2017).
These two datasets have 244,107 and 576,978 examples, respectively, with 18 features. The HMDA datasets together contain
over 140 million examples of US home mortgage loans from 2007-2017 (newer data exists, but in a different format). We
developed a toolkit, described below, to make this dataset easy to use for classification experiments. Similar to New Adult,
we enable subsetting by US state. For the experiments in this paper, we run on the NY (New York) and TX (Texas) 2017
subset, in order to add some geographic diversity to complement our New Adult experiments. We additionally chose NY
and TX because they are two of the most populous states in the US, alongside CA.15

The target variable, action taken, concerning loan origination has 8 values, 2 of which we cannot meaningful conclude
approval or denial decisions. They are: Action Taken: 1 – Loan originated, 2 – Application approved but not accepted, 3 –
Application denied by financial institution, 4 – Application withdrawn by applicant, 5 – File closed for incompleteness, 6
– Loan purchased by the institution, 7 – Preapproval request denied by financial institution, and 8 – Preapproval request
approved but not accepted (optional reporting). We filter out 4 and 6, and binarize into grant={1, 2, 8} = 1 and
reject={3, 5, 7} = 0. There are three protected attributes that we consider: sex, race, and ethnicity:

• sex has 5 possible values, 2 of which correspond to categories/non-missing values: Male – 1 and Female – 2. We
binarize sex into F = 0 and M = 1.

• race has 8 possible values, 5 of which correspond to categories/ non-missing information: 1 – American Indian
or Alaska Native, 2 – Asian, 3 – Black or African American, 4 – Native Hawaiian or Other Pacific Islander, and 5 –

15Per the 2020 Census, the top-4-most-populous states are CA, TX, FL, and NY (Mackun et al., 2021).

https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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White. There are 5 fields for applicant race, which model an applicant belonging to more than one racial group. For our
experiments, we only look at the first field. When we binarize race, NW = 0 and W = 1.

• ethnicity has 5 possible values, 2 of which correspond to categories/ non-missing information: 1 – Hispanic or
Latino and 2 – Not Hispanic or Latino. We binarize ethnicity to be HL = 0 and NHL = 1.

After subsetting to only include examples that have values that do not correspond to missing information, HMDA has 18
features. The NY dataset has 244,107 examples; the TX dataset has 576,978 examples, making it the largest dataset in our
experiments. As with our experiments using New Adult, we would like to extend our results beyond binary subgroups
and binary classification in future work.

Releasing a standalone toolkit. These datasets are less-commonly used in current algorithmic fairness literature (Fabris
et al., 2022). We believe this is likely due to the fact that the over-100-million data examples are only available in bulk
files, which are on the order of 10s of gigabytes and therefore not easily downloadable or explorable on most personal
computers. Following the example of Ding et al. (2021), one of our contributions is to pre-process all of these datasets
— all locations and years — and release them with a software toolkit. The software engineering effort to produce this toolkit
was substantial. Our hope is that wider access to this dataset will further reduce the community’s dependency on small (and
dated) datasets. Please refer to https://github.com/pasta41/hmda for the latest information on this standalone
software package. Our release aligns with the terms of service for this dataset.

E.2. Cluster environment details

While most of the experiments run in this paper can be easily reproduced on a modern laptop, for efficiency, we ran all of our
experiments (except the one to produce Figure 1) in a cluster environment. This enabled us to easily execute train/test splits
n in parallel on different CPUs, serialize our results, and then reconstitute and combine them to produce plots locally. Our
cluster environment runs Ubuntu 20.04 and uses Slurm v20.11.8 to manage jobs. We ran all experiments using Anaconda3,
which is why we used Conda to reproduce environments for easy replicability.

The experiments using New Adult and HMDA rely on datasets that are (in some cases) orders of magnitude larger than the
traditional algorithmic fairness tasks. This is one of the reasons why we recommend running on a cluster, and therefore do
not include Jupyter notebooks in our repository for these tasks. We also limit our modeling choices to logistic regression,
decision tree classifiers, and random forest classifiers for these results due to the expense of training on the order of thousands
of models for each experiment.

E.3. Details on motivating examples in the main paper

This appendix provides extended results for the experiments associated in Sections 1 and 3, which give an intuition for
individual- and subgroup-level consistency. The experimental results in the main paper are for logistic regression. We
expand the set of models we examine, and associated discussion of how to interpret comparisons between these results.

Reproducing Figure 1. The experiment to produce this figure in Section 1 (also shown in Appendix B.3) trains B = 10
logistic regression models on the COMPAS dataset (Appendix E.1) using 0-1 loss. We use the bootstrap method to produce
each model, which we evaluate on the same test set. We then search for a maximally consistent and minimally consistent
individual in the test set, i.e., an individual with 10 predictions that agree and an individual with 5 predictions in each
class, which we plot in the bar graph. Please refer to the README in https://github.com/pasta41/variance
regarding which Jupyter notebook to run to produce the underlying results and figure. The experiments to reproduce
this figure can be easily replicated on a laptop.

Reproducing Figure 2. These figures were produced by executing S = 10 runs of B = 101 bootstrap training replicates to
train random forest classifiers for Old Adult and COMPAS. We reproduce these figures below, so that they can be examined
and treated in relation to our additional results for decision tree classifiers and logistic regression. For each s run, we take
train/test split, bootstrap the train split B = 101 times, and evaluate the resulting model classification decisions on the test
set. ŜC can be estimated from the results across those 101 models. We Run this process S = 10 times to produce confidence
intervals, shown in the figures below. The intervals are not always clearly visible; there is not a lot of variance at the level of
comparing whole runs to each other. Please refer to the README in https://github.com/pasta41/variance
regarding which Jupyter notebook to run to produce the underlying results and figure. There are also scripted version of
these experiments, which enable them to be run in parallel in a cluster environment.

https://github.com/pasta41/hmda
https://github.com/pasta41/variance
https://github.com/pasta41/variance
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Self-consistency of incorrectly-classified instances. Last, we include figures that underscore how self-consistency is
independent from correctness that is measured in terms of observed label alignment. That is, it is possible for an instance
(x, g) to be self-consistent and classified incorrectly, with respect to its observed label o.

We show this using stacked bar plots. For the above experiments, we find the test examples that have the majority of their
classifications incorrect (ŷ ̸= o, for B = 101, we find the instances with ≥ 51 incorrect classifications) and the majority
of their classification correct (similarly), and we examine how self-consistent they are. We bucket self-consistency into
different levels, and then plot the relative proportion of majority-incorrectly and majority-correctly classified examples
according to subgroup. Subgroups in COMPAS exhibit a similar trend, while subgroups in Adult Old exhibit differences,
with the heights of the bars corresponding to the trends we plot in our CDF plots. As we note briefly in Section 3, it may be
interesting to examine patterns in examples about which learning processes are confident (i.e., highly self-consistent) but
wrong in terms of label alignment. If such issues correlate with subgroup, it may be worth testing the counterfactual that
such labels are indicative of label bias. We leave such thoughts to future work.
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Figure 7. ŜC broken down by g and label alignment with the observed label o. For each train/test split, and for each ŜC range (x-axis), we
find the examples that are incorrectly classified the majority of time (≥ 5 splits, we find that ŷ ̸= o), and the examples that are correctly
classified the majority of the time (> 5, we find that ŷ = o). We compute the average the proportion over (over splits) in each ŜC range
(y-axis). We plot these proportions with respect to subgroup g (where the sums of the heights of bars for by each g is equal to 1).
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E.4. Validating our algorithm in practice

E.4.1. COMPAS

ŜC CDFs for COMPAS (g = race) and associated error metrics on the prediction set. Baseline metrics computed with
B = 101 models. For simple, B = 101 models; for super, B = 101 ensemble models, each composed of 51 underlying
models. We repeat for 10 test/train splits. We also report abstention rate ÂR.
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∆ÂR 1.1± 0.9% 0.5± 0.0%

ÂRNW 23.2± 1.3% 4.3± 0.5%

ÂRW 22.1± 2.2% 3.8± 0.5%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 14.5± 0.3% 18.7± 0.5% 15.6± 0.1%

P̂RNW 45.3± 1.2% 43.8± 1.1% 44.2± 0.7%

P̂RW 30.8± 1.5% 25.1± 1.6% 28.6± 0.6%

∆ ˆErr 0.2± 0.2% 1.1± 1.5% 0.9± 1.1%

ˆErrNW 33.0± 1.3% 27.9± 0.9% 31.0± 1.0%

ˆErrW 33.2± 1.1% 29.0± 2.4% 31.9± 2.1%

∆ ˆFPR 2.1± 0.0% 3.0± 0.0% 1.8± 0.2%

ˆFPRNW 14.7± 1.3% 11.4± 1.0% 12.9± 0.8%

ˆFPRW 12.6± 1.3% 8.4± 1.0% 11.1± 0.6%

∆ ˆFNR 2.4± 0.0% 4.0± 1.1% 2.8± 0.8%

ˆFNRNW 18.3± 1.1% 16.5± 1.9% 18.0± 1.3%

ˆFNRW 20.7± 1.1% 20.5± 3.0% 20.8± 2.1%

Figure 8. Logistic regression on COMPAS
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∆ÂR 1.9± 1.0% 2.3± 0.1%

ÂRNW 62.3± 1.8% 12.3± 0.8%

ÂRW 64.2± 2.8% 14.6± 0.9%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 10.1± 0.6% 22.9± 1.7% 15.8± 0.5%

P̂RNW 47.9± 0.7% 43.4± 3.1% 48.5± 1.2%

P̂RW 37.8± 1.3% 20.5± 1.4% 32.7± 1.7%

∆ ˆErr 0.6± 0.9% 1.7± 0.7% 1.2± 0.8%

ˆErrNW 38.8± 0.5% 24.0± 0.9% 32.8± 0.4%

ˆErrW 38.2± 1.4% 22.3± 1.6% 31.6± 1.2%

∆ ˆFPR 0.2± 0.4% 4.0± 0.4% 2.5± 0.9%

ˆFPRNW 18.8± 0.8% 10.4± 1.8% 16.1± 0.9%

ˆFPRW 18.6± 1.2% 6.4± 1.4% 13.6± 1.8%

∆ ˆFNR 0.3± 0.3% 2.3± 1.3% 1.4± 0.1%

ˆFNRNW 19.9± 0.7% 13.6± 1.0% 16.6± 1.3%

ˆFNRW 19.6± 1.0% 15.9± 2.3% 18.0± 1.2%

Figure 9. Decision trees on COMPAS
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∆ÂR 0.3± 0.6% 0.2± 0.7%

ÂRNW 53.9± 1.6% 10.6± 0.5%

ÂRW 53.6± 2.2% 10.8± 1.2%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 13.0± 0.7% 24.3± 0.4% 18.6± 0.5%

P̂RNW 48.0± 0.6% 45.6± 1.7% 47.8± 0.9%

P̂RW 35.0± 1.3% 21.3± 1.3% 29.2± 1.4%

∆ ˆErr 1.0± 0.8% 0.6± 0.8% 2.1± 1.0%

ˆErrNW 36.9± 0.5% 23.3± 0.8% 32.3± 0.4%

ˆErrW 35.9± 1.3% 23.9± 1.6% 30.2± 1.4%

∆ ˆFPR 2.0± 0.4% 3.2± 0.0% 4.5± 0.4%

ˆFPRNW 18.0± 0.8% 10.0± 1.3% 15.3± 1.2%

ˆFPRW 16.0± 1.2% 6.8± 1.3% 10.8± 0.8%

∆ ˆFNR 0.9± 0.4% 3.7± 1.2% 2.4± 0.8%

ˆFNRNW 19.0± 0.7% 13.4± 1.2% 16.9± 1.2%

ˆFNRW 19.9± 1.1% 17.1± 2.4% 19.3± 2.0%

Figure 10. Random forests on COMPAS

E.4.2. OLD ADULT

ŜC CDFs for Old Adult (g = sex) and associated error metrics on the prediction set. Baseline metrics computed with
B = 101 models. For simple, B = 101 models; for super, B = 101 ensemble models, each composed of 51 underlying
models. We repeat for 10 test/train splits. We also report abstention rate ÂR.
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∆ÂR 2.6± 0.0% 0.5± 0.0%

ÂRF 1.8± 0.2% 0.3± 0.1%

ÂRM 4.4± 0.2% 0.8± 0.1%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 18.3± 0.2% 17.8± 0.1% 18.1± 0.1%

P̂RF 8.2± 0.3% 7.1± 0.4% 7.6± 0.4%

P̂RM 26.5± 0.5% 24.9± 0.5% 25.7± 0.5%

∆ ˆErr 11.3± 0.1% 10.8± 0.1% 11.4± 0.2%

ˆErrF 7.8± 0.4% 7.0± 0.3% 7.5± 0.2%

ˆErrM 19.1± 0.3% 17.8± 0.4% 18.9± 0.4%

∆ ˆFPR 4.7± 0.0% 4.4± 0.2% 4.8± 0.2%

ˆFPRF 2.3± 0.3% 1.6± 0.1% 1.8± 0.1%

ˆFPRM 7.0± 0.3% 6.0± 0.3% 6.6± 0.3%

∆ ˆFNR 6.7± 0.1% 6.5± 0.1% 6.6± 0.1%

ˆFNRF 5.5± 0.3% 5.4± 0.2% 5.7± 0.2%

ˆFNRM 12.2± 0.2% 11.9± 0.1% 12.3± 0.1%

Figure 11. Logistic regression on Old Adult
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∆ÂR 19.5± 0.2% 3.5± 0.1%

ÂRF 18.2± 0.4% 3.4± 0.2%

ÂRM 37.7± 0.6% 6.9± 0.3%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 20.3± 0.1% 18.2± 0.1% 19.9± 0.1%

P̂RF 12.1± 0.4% 4.5± 0.3% 7.8± 0.5%

P̂RM 32.4± 0.5% 22.7± 0.2% 27.7± 0.4%

∆ ˆErr 12.3± 0.0% 6.0± 0.1% 10.9± 0.2%

ˆErrF 10.8± 0.3% 3.0± 0.2% 6.6± 0.4%

ˆErrM 23.1± 0.3% 9.0± 0.3% 17.5± 0.2%

∆ ˆFPR 6.2± 0.1% 2.5± 0.1% 5.4± 0.2%

ˆFPRF 5.7± 0.2% 0.4± 0.0% 1.9± 0.3%

ˆFPRM 11.9± 0.3% 2.9± 0.1% 7.3± 0.1%

∆ ˆFNR 6.1± 0.1% 3.4± 0.0% 5.5± 0.1%

ˆFNRF 5.1± 0.3% 2.7± 0.2% 4.7± 0.1%

ˆFNRM 11.2± 0.2% 6.1± 0.2% 10.2± 0.2%

Figure 12. Decision trees on Old Adult
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∆ÂR 17.2± 0.4% 3.4± 0.1%

ÂRF 11.2± 0.3% 2.0± 0.3%

ÂRM 28.4± 0.7% 5.4± 0.2%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 20.0± 0.2% 17.1± 0.3% 19.0± 0.2%

P̂RF 9.8± 0.2% 4.8± 0.2% 7.7± 0.3%

P̂RM 29.8± 0.4% 21.9± 0.5% 26.7± 0.5%

∆ ˆErr 12.2± 0.0% 6.5± 0.1% 10.7± 0.0%

ˆErrF 9.0± 0.3% 4.2± 0.2% 6.6± 0.2%

ˆErrM 21.2± 0.3% 10.7± 0.3% 17.3± 0.2%

∆ ˆFPR 6.0± 0.2% 2.5± 0.1% 5.0± 0.1%

ˆFPRF 3.7± 0.1% 0.7± 0.1% 1.7± 0.2%

ˆFPRM 9.7± 0.3% 3.2± 0.2% 6.7± 0.3%

∆ ˆFNR 6.3± 0.2% 4.1± 0.2% 5.8± 0.1%

ˆFNRF 5.3± 0.3% 3.5± 0.1% 4.9± 0.2%

ˆFNRM 11.6± 0.1% 7.6± 0.3% 10.7± 0.3%

Figure 13. Random forests on Old Adult
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E.4.3. SOUTH GERMAN CREDIT

ŜC CDFs for German Credit (g = sex) and associated error metrics on the prediction set. Baseline metrics computed
with B = 101 models. For simple, B = 101 models; for super, B = 101 ensemble models, each composed of 51
underlying models. We repeat for 10 test/train splits. We also report abstention rate ÂR.
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∆ÂR 0.4± 3.9% 0.1± 1.8%

ÂRF 20.8± 6.6% 4.1± 3.1%

ÂRM 21.2± 2.7% 4.0± 1.3%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 8.8± 1.4% 9.1± 1.2% 9.7± 1.7%

P̂RF 88.8± 4.7% 96.0± 4.1% 91.7± 5.0%

P̂RM 80.0± 3.3% 86.9± 2.9% 82.0± 3.3%

∆ ˆErr 0.9± 4.0% 4.6± 6.1% 3.4± 4.7%

ˆErrF 23.3± 6.9% 22.8± 8.7% 25.5± 7.4%

ˆErrM 24.2± 2.9% 18.2± 2.6% 22.1± 2.7%

∆ ˆFPR 0.7± 3.9% 5.4± 5.8% 5.5± 5.4%

ˆFPRF 16.2± 6.2% 19.6± 8.4% 21.1± 7.8%

ˆFPRM 15.5± 2.3% 14.2± 2.6% 15.6± 2.4%

∆ ˆFNR 1.6± 1.1% 0.8± 1.9% 2.1± 1.8%

ˆFNRF 7.1± 3.7% 3.2± 3.5% 4.4± 3.8%

ˆFNRM 8.7± 2.6% 4.0± 1.6% 6.5± 2.0%

Figure 14. Logistic regression on German Credit
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∆ÂR 0.0± 2.6% 2.8± 2.6%

ÂRF 65.2± 6.0% 19.9± 5.9%

ÂRM 65.2± 3.4% 17.1± 3.3%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 0.3± 2.5% 1.9± 0.4% 3.7± 3.7%

P̂RF 71.2± 4.6% 99.6± 0.8% 87.9± 6.0%

P̂RM 70.9± 2.1% 97.7± 1.2% 84.2± 2.3%

∆ ˆErr 1.1± 2.9% 0.3± 5.2% 0.1± 4.9%

ˆErrF 33.0± 4.8% 9.8± 8.0% 20.3± 8.2%

ˆErrM 31.9± 1.9% 9.5± 2.8% 20.2± 3.3%

∆ ˆFPR 0.7± 3.5% 0.8± 5.1% 0.4± 3.9%

ˆFPRF 15.6± 5.9% 9.6± 7.9% 15.2± 7.0%

ˆFPRM 14.9± 2.4% 8.8± 2.8% 14.8± 3.1%

∆ ˆFNR 0.5± 2.3% 0.4± 0.0% 0.2± 3.6%

ˆFNRF 17.4± 4.4% 0.2± 0.7% 5.2± 5.1%

ˆFNRM 16.9± 2.1% 0.6± 0.7% 5.4± 1.5%

Figure 15. Decision trees on German Credit
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∆ÂR 0.1± 2.8% 1.2± 3.3%

ÂRF 47.5± 6.7% 9.9± 5.7%

ÂRM 47.4± 3.9% 8.7± 2.4%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 3.9± 1.6% 1.9± 0.6% 4.9± 2.1%

P̂RF 81.7± 3.3% 99.9± 0.4% 94.5± 4.0%

P̂RM 77.8± 1.7% 98.0± 1.0% 89.6± 1.9%

∆ ˆErr 2.3± 3.1% 0.0± 4.7% 2.4± 6.7%

ˆErrF 25.8± 5.1% 11.9± 7.8% 23.5± 9.6%

ˆErrM 28.1± 2.0% 11.9± 3.1% 21.1± 2.9%

∆ ˆFPR 2.5± 3.0% 0.3± 4.7% 2.2± 6.2%

ˆFPRF 13.8± 4.8% 11.8± 7.8% 20.5± 9.1%

ˆFPRM 16.3± 1.8% 11.5± 3.1% 18.3± 2.9%

∆ ˆFNR 0.2± 1.7% 0.3± 0.1% 0.1± 2.3%

ˆFNRF 11.9± 3.1% 0.1± 0.3% 3.0± 3.5%

ˆFNRM 11.7± 1.4% 0.4± 0.4% 2.9± 1.2%

Figure 16. Random forests on German Credit

E.4.4. TAIWAN CREDIT

ŜC CDFs for Taiwan Credit (g = sex) and associated error metrics on the prediction set. Baseline metrics computed
with B = 101 models. For simple, B = 101 models; for super, B = 101 ensemble models, each composed of 41
underlying models. We repeat for 10 test/train splits. We also report abstention rate ÂR.
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Abstention set metrics

Simple Super

∆ÂR 0.4± 0.2% 0.0± 0.2%

ÂRF 2.1± 0.1% 0.4± 0.0%

ÂRM 2.5± 0.3% 0.4± 0.2%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 1.5± 0.1% 1.0± 0.1% 1.0± 0.1%

P̂RF 6.7± 0.3% 6.2± 0.1% 6.9± 0.1%

P̂RM 8.2± 0.4% 7.2± 0.2% 7.9± 0.2%

∆ ˆErr 3.1± 0.1% 3.1± 0.3% 3.2± 0.3%

ˆErrF 17.8± 0.5% 17.0± 0.2% 17.5± 0.3%

ˆErrM 20.9± 0.4% 20.1± 0.5% 20.7± 0.6%

∆ ˆFPR 0.7± 0.2% 0.3± 0.0% 0.3± 0.1%

ˆFPRF 1.8± 0.1% 1.7± 0.1% 2.0± 0.1%

ˆFPRM 2.5± 0.3% 2.0± 0.1% 2.3± 0.2%

∆ ˆFNR 2.4± 0.2% 2.7± 0.4% 2.8± 0.3%

ˆFNRF 16.0± 0.6% 15.3± 0.2% 15.6± 0.3%

ˆFNRM 18.4± 0.4% 18.0± 0.6% 18.4± 0.6%

Figure 17. Logistic regression on Taiwan Credit
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Abstention set metrics

Simple Super

∆ÂR 3.2± 0.1% 1.3± 0.1%

ÂRF 56.7± 0.6% 6.7± 0.2%

ÂRM 59.9± 0.5% 8.0± 0.1%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 2.1± 0.1% 1.2± 0.0% 2.0± 0.2%

P̂RF 22.9± 0.2% 3.0± 0.4% 9.9± 0.3%

P̂RM 25.0± 0.3% 4.2± 0.4% 11.9± 0.5%

∆ ˆErr 2.3± 0.1% 1.6± 0.0% 2.5± 0.1%

ˆErrF 26.8± 0.2% 9.6± 0.4% 15.3± 0.3%

ˆErrM 29.1± 0.3% 11.2± 0.4% 17.8± 0.4%

∆ ˆFPR 0.6± 0.1% 0.2± 0.1% 0.7± 0.2%

ˆFPRF 14.4± 0.2% 0.6± 0.1% 3.0± 0.1%

ˆFPRM 15.0± 0.3% 0.8± 0.2% 3.7± 0.3%

∆ ˆFNR 1.7± 0.2% 1.3± 0.1% 1.9± 0.1%

ˆFNRF 12.4± 0.4% 9.0± 0.4% 12.3± 0.3%

ˆFNRM 14.1± 0.2% 10.3± 0.5% 14.2± 0.4%

Figure 18. Decision trees on Taiwan Credit
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Abstention set metrics

Simple Super

∆ÂR 4.1± 0.1% 0.8± 0.0%

ÂRF 24.0± 0.8% 3.9± 0.3%

ÂRM 28.1± 0.7% 4.7± 0.3%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 2.5± 0.1% 1.0± 0.1% 2.1± 0.2%

P̂RF 14.9± 0.2% 4.1± 0.3% 10.3± 0.2%

P̂RM 17.4± 0.3% 5.1± 0.2% 12.4± 0.4%

∆ ˆErr 2.8± 0.1% 1.9± 0.0% 2.5± 0.1%

ˆErrF 20.5± 0.3% 12.0± 0.4% 15.8± 0.4%

ˆErrM 23.3± 0.4% 13.9± 0.4% 18.3± 0.5%

∆ ˆFPR 1.0± 0.1% 0.3± 0.1% 0.6± 0.1%

ˆFPRF 7.2± 0.2% 0.9± 0.1% 3.3± 0.1%

ˆFPRM 8.2± 0.3% 1.2± 0.2% 3.9± 0.2%

∆ ˆFNR 1.7± 0.1% 1.6± 0.1% 1.8± 0.0%

ˆFNRF 13.3± 0.4% 11.0± 0.3% 12.6± 0.4%

ˆFNRM 15.0± 0.3% 12.6± 0.4% 14.4± 0.4%

Figure 19. Random forests on Taiwan Credit
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E.4.5. NEW ADULT - CA

ŜC CDFs for three tasks (Income, Employment, Public Coverage) in New Adult - CA, using g = sex and
race, and associated error metrics on the prediction set. Baseline metrics computed with B = 101 models. For simple,
B = 101 models; for super, B = 101 ensemble models, each composed of 21 underlying models for Income and Public
Coverage; 15 for Employment. We repeat for 5 test/train splits. We also report abstention rate ÂR.

Income - by sex.
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Abstention set metrics

Simple Super

∆ÂR 0.1± 0.0% 0.1± 0.0%

ÂRF 1.0± 0.0% 0.3± 0.0%

ÂRM 0.9± 0.0% 0.2± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 2.7± 0.1% 2.9± 0.1% 2.8± 0.1%

P̂RF 38.4± 0.2% 38.1± 0.2% 38.2± 0.2%

P̂RM 41.1± 0.3% 41.0± 0.1% 41.0± 0.1%

∆ ˆErr 0.9± 0.0% 1.0± 0.2% 1.0± 0.2%

ˆErrF 21.5± 0.2% 21.1± 0.3% 21.3± 0.3%

ˆErrM 22.4± 0.2% 22.1± 0.1% 22.3± 0.1%

∆ ˆFPR 4.0± 0.1% 3.9± 0.0% 3.9± 0.0%

ˆFPRF 12.5± 0.2% 12.2± 0.1% 12.3± 0.1%

ˆFPRM 8.5± 0.1% 8.3± 0.1% 8.4± 0.1%

∆ ˆFNR 4.9± 0.0% 4.9± 0.1% 4.8± 0.1%

ˆFNRF 9.0± 0.1% 8.9± 0.2% 9.1± 0.2%

ˆFNRM 13.9± 0.1% 13.8± 0.1% 13.9± 0.1%

Figure 20. Logistic regression on New Adult - CA - Income, by sex
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Abstention set metrics

Simple Super

∆ÂR 2.1± 0.2% 0.8± 0.0%

ÂRF 49.2± 0.3% 13.3± 0.2%

ÂRM 51.3± 0.1% 14.1± 0.2%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 7.5± 0.1% 12.5± 0.1% 9.7± 0.1%

P̂RF 37.4± 0.2% 26.8± 0.4% 34.1± 0.3%

P̂RM 44.9± 0.1% 39.3± 0.3% 43.8± 0.2%

∆ ˆErr 1.4± 0.0% 1.0± 0.0% 1.4± 0.0%

ˆErrF 24.4± 0.1% 6.9± 0.1% 14.5± 0.2%

ˆErrM 25.8± 0.1% 7.9± 0.1% 15.9± 0.2%

∆ ˆFPR 1.4± 0.0% 0.1± 0.1% 0.5± 0.1%

ˆFPRF 13.5± 0.1% 3.6± 0.1% 7.6± 0.1%

ˆFPRM 12.1± 0.1% 3.5± 0.2% 7.1± 0.2%

∆ ˆFNR 2.9± 0.0% 1.1± 0.0% 1.9± 0.1%

ˆFNRF 10.9± 0.1% 3.3± 0.1% 6.9± 0.1%

ˆFNRM 13.8± 0.1% 4.4± 0.1% 8.8± 0.2%

Figure 21. Decision trees on New Adult - CA - Income, by sex
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Abstention set metrics

Simple Super

∆ÂR 1.4± 0.1% 0.2± 0.0%

ÂRF 32.8± 0.2% 8.6± 0.1%

ÂRM 34.2± 0.1% 8.8± 0.1%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 7.4± 0.1% 10.3± 0.2% 8.6± 0.1%

P̂RF 36.7± 0.2% 30.6± 0.4% 34.9± 0.3%

P̂RM 44.1± 0.1% 40.9± 0.2% 43.5± 0.2%

∆ ˆErr 1.4± 0.0% 1.2± 0.0% 1.4± 0.1%

ˆErrF 21.0± 0.1% 9.3± 0.2% 15.3± 0.1%

ˆErrM 22.4± 0.1% 10.5± 0.2% 16.7± 0.2%

∆ ˆFPR 1.4± 0.0% 0.5± 0.0% 0.9± 0.1%

ˆFPRF 11.4± 0.1% 4.9± 0.1% 8.1± 0.1%

ˆFPRM 10.0± 0.1% 4.4± 0.1% 7.2± 0.2%

∆ ˆFNR 2.8± 0.0% 1.8± 0.0% 2.3± 0.0%

ˆFNRF 9.6± 0.1% 4.4± 0.1% 7.2± 0.1%

ˆFNRM 12.4± 0.1% 6.2± 0.1% 9.5± 0.1%

Figure 22. Random forests on New Adult - CA - Income, by sex

Income - by race.
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∆ÂR 0.0± 0.0% 0.0± 0.0%

ÂRNW 1.0± 0.0% 0.2± 0.0%

ÂRW 1.0± 0.0% 0.2± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 9.2± 0.1% 9.2± 0.3% 9.2± 0.2%

P̂RNW 34.1± 0.3% 33.9± 0.3% 34.0± 0.3%

P̂RW 43.3± 0.2% 43.1± 0.0% 43.2± 0.1%

∆ ˆErr 0.6± 0.1% 0.4± 0.1% 0.4± 0.1%

ˆErrNW 21.6± 0.2% 21.4± 0.2% 21.6± 0.2%

ˆErrW 22.2± 0.1% 21.8± 0.1% 22.0± 0.1%

∆ ˆFPR 0.6± 0.1% 0.5± 0.0% 0.5± 0.0%

ˆFPRNW 10.0± 0.2% 9.8± 0.1% 9.9± 0.1%

ˆFPRW 10.6± 0.1% 10.3± 0.1% 10.4± 0.1%

∆ ˆFNR 0.0± 0.1% 0.1± 0.2% 0.1± 0.3%

ˆFNRNW 11.6± 0.2% 11.6± 0.3% 11.7± 0.3%

ˆFNRW 11.6± 0.1% 11.5± 0.1% 11.6± 0.0%

Figure 23. Logistic regression on New Adult - CA - Income, by race



Is My Prediction Arbitrary? Measuring Self-Consistency in Fair Classification

0.5 0.6 0.7 0.8 0.9 1.0
SC

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

= 0.75Simple
NW
W

Super
NW
W

Abstention set metrics

Simple Super

∆ÂR 2.5± 0.1% 1.0± 0.1%

ÂRNW 48.8± 0.3% 13.1± 0.2%

ÂRW 51.3± 0.2% 14.1± 0.1%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 7.0± 0.0% 10.3± 0.0% 9.9± 0.1%

P̂RNW 37.0± 0.2% 27.0± 0.2% 33.1± 0.3%

P̂RW 44.0± 0.2% 37.3± 0.2% 43.0± 0.2%

∆ ˆErr 1.1± 0.0% 0.2± 0.1% 0.6± 0.0%

ˆErrNW 24.5± 0.1% 7.3± 0.0% 14.8± 0.2%

ˆErrW 25.6± 0.1% 7.5± 0.1% 15.4± 0.2%

∆ ˆFPR 0.2± 0.0% 0.5± 0.0% 0.7± 0.0%

ˆFPRNW 12.9± 0.1% 3.2± 0.1% 6.9± 0.1%

ˆFPRW 12.7± 0.1% 3.7± 0.1% 7.6± 0.1%

∆ ˆFNR 1.4± 0.0% 0.3± 0.0% 0.2± 0.0%

ˆFNRNW 11.6± 0.1% 4.1± 0.1% 8.0± 0.1%

ˆFNRW 13.0± 0.1% 3.8± 0.1% 7.8± 0.1%

Figure 24. Decision trees on New Adult - CA - Income, by race
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∆ÂR 2.4± 0.2% 0.8± 0.0%

ÂRNW 32.1± 0.3% 8.2± 0.1%

ÂRW 34.5± 0.1% 9.0± 0.1%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 8.4± 0.0% 11.0± 0.0% 10.1± 0.2%

P̂RNW 35.4± 0.2% 29.3± 0.2% 33.2± 0.3%

P̂RW 43.8± 0.2% 40.3± 0.2% 43.3± 0.1%

∆ ˆErr 1.2± 0.0% 0.2± 0.1% 0.5± 0.0%

ˆErrNW 21.0± 0.1% 9.8± 0.1% 15.7± 0.2%

ˆErrW 22.2± 0.1% 10.0± 0.2% 16.2± 0.2%

∆ ˆFPR 0.6± 0.0% 0.7± 0.0% 0.9± 0.1%

ˆFPRNW 10.3± 0.1% 4.2± 0.1% 7.1± 0.2%

ˆFPRW 10.9± 0.1% 4.9± 0.1% 8.0± 0.1%

∆ ˆFNR 0.7± 0.0% 0.5± 0.0% 0.3± 0.1%

ˆFNRNW 10.7± 0.1% 5.6± 0.1% 8.6± 0.2%

ˆFNRW 11.4± 0.1% 5.1± 0.1% 8.3± 0.1%

Figure 25. Random forests on New Adult - CA - Income, by race
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Employment - by sex.
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∆ÂR 0.1± 0.0% 0.0± 0.0%

ÂRF 0.8± 0.0% 0.3± 0.0%

ÂRM 0.7± 0.0% 0.3± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 4.3± 0.1% 4.5± 0.0% 4.4± 0.0%

P̂RF 56.6± 0.1% 56.8± 0.1% 56.7± 0.1%

P̂RM 52.3± 0.2% 52.3± 0.1% 52.3± 0.1%

∆ ˆErr 5.0± 0.0% 4.9± 0.0% 4.9± 0.0%

ˆErrF 25.8± 0.1% 25.5± 0.1% 25.6± 0.1%

ˆErrM 20.8± 0.1% 20.6± 0.1% 20.7± 0.1%

∆ ˆFPR 8.1± 0.0% 8.1± 0.0% 8.1± 0.0%

ˆFPRF 20.1± 0.1% 20.1± 0.0% 20.1± 0.0%

ˆFPRM 12.0± 0.1% 12.0± 0.0% 12.0± 0.0%

∆ ˆFNR 3.1± 0.0% 3.2± 0.1% 3.2± 0.1%

ˆFNRF 5.7± 0.1% 5.4± 0.0% 5.5± 0.0%

ˆFNRM 8.8± 0.1% 8.6± 0.1% 8.7± 0.1%

Figure 26. Logistic regression on New Adult - CA - Employment, by sex
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∆ÂR 0.2± 0.0% 0.1± 0.1%

ÂRF 22.5± 0.1% 8.2± 0.2%

ÂRM 22.3± 0.1% 8.1± 0.3%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 0.5± 0.0% 0.7± 0.2% 0.6± 0.1%

P̂RF 50.3± 0.2% 50.0± 0.3% 51.2± 0.2%

P̂RM 49.8± 0.2% 49.3± 0.1% 50.6± 0.1%

∆ ˆErr 4.8± 0.0% 5.8± 0.1% 5.8± 0.1%

ˆErrF 24.8± 0.1% 17.8± 0.1% 20.9± 0.2%

ˆErrM 20.0± 0.1% 12.0± 0.0% 15.1± 0.1%

∆ ˆFPR 6.1± 0.0% 6.2± 0.1% 6.4± 0.1%

ˆFPRF 16.5± 0.1% 13.8± 0.1% 15.2± 0.1%

ˆFPRM 10.4± 0.1% 7.6± 0.0% 8.8± 0.0%

∆ ˆFNR 1.3± 0.0% 0.3± 0.0% 0.7± 0.1%

ˆFNRF 8.3± 0.1% 4.0± 0.1% 5.6± 0.2%

ˆFNRM 9.6± 0.1% 4.3± 0.1% 6.3± 0.1%

Figure 27. Decision trees on New Adult - CA - Employment, by sex
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∆ÂR 0.7± 0.0% 0.4± 0.0%
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Random forest prediction set metrics

Baseline Simple Super

∆P̂R 0.3± 0.1% 0.5± 0.1% 0.6± 0.1%

P̂RF 49.2± 0.1% 48.7± 0.2% 50.3± 0.2%

P̂RM 48.9± 0.2% 48.2± 0.1% 49.7± 0.1%

∆ ˆErr 4.8± 0.0% 5.4± 0.0% 5.5± 0.2%

ˆErrF 24.0± 0.1% 17.5± 0.1% 20.5± 0.2%

ˆErrM 19.2± 0.1% 12.1± 0.1% 15.0± 0.0%

∆ ˆFPR 6.0± 0.0% 5.9± 0.1% 6.2± 0.1%

ˆFPRF 15.5± 0.1% 13.2± 0.1% 14.7± 0.1%

ˆFPRM 9.5± 0.1% 7.3± 0.0% 8.5± 0.0%

∆ ˆFNR 1.2± 0.0% 0.4± 0.0% 0.8± 0.0%

ˆFNRF 8.5± 0.1% 4.3± 0.1% 5.8± 0.1%

ˆFNRM 9.7± 0.1% 4.7± 0.1% 6.6± 0.1%

Figure 28. Random forests on New Adult - CA - Employment, by sex

Employment - by race.
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Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 1.1± 0.2% 1.2± 0.1% 1.2± 0.1%

P̂RNW 55.2± 0.3% 55.3± 0.2% 55.3± 0.2%

P̂RW 54.1± 0.1% 54.1± 0.1% 54.1± 0.1%

∆ ˆErr 0.1± 0.0% 0.2± 0.1% 0.2± 0.0%

ˆErrNW 23.3± 0.1% 23.0± 0.0% 23.1± 0.1%

ˆErrW 23.4± 0.1% 23.2± 0.1% 23.3± 0.1%

∆ ˆFPR 0.8± 0.0% 0.7± 0.1% 0.7± 0.1%

ˆFPRNW 16.6± 0.1% 16.5± 0.0% 16.6± 0.0%

ˆFPRW 15.8± 0.1% 15.8± 0.1% 15.9± 0.1%

∆ ˆFNR 1.0± 0.0% 1.0± 0.0% 0.9± 0.0%

ˆFNRNW 6.6± 0.1% 6.4± 0.1% 6.5± 0.1%

ˆFNRW 7.6± 0.1% 7.4± 0.1% 7.4± 0.1%

Figure 29. Logistic regression on New Adult - CA - Employment, by race
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ÂRNW 22.4± 0.2% 8.2± 0.2%

ÂRW 22.4± 0.1% 8.1± 0.3%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 0.2± 0.2% 0.6± 0.0% 1.2± 0.1%

P̂RNW 50.2± 0.3% 50.0± 0.1% 51.6± 0.0%

P̂RW 50.0± 0.1% 49.4± 0.1% 50.4± 0.1%

∆ ˆErr 0.6± 0.0% 0.7± 0.0% 0.6± 0.0%

ˆErrNW 22.1± 0.1% 14.5± 0.1% 17.7± 0.1%

ˆErrW 22.7± 0.1% 15.2± 0.1% 18.3± 0.1%

∆ ˆFPR 0.1± 0.0% 0.6± 0.1% 0.7± 0.1%

ˆFPRNW 13.5± 0.1% 11.1± 0.0% 12.5± 0.0%

ˆFPRW 13.4± 0.1% 10.5± 0.1% 11.8± 0.1%

∆ ˆFNR 0.6± 0.0% 1.3± 0.0% 1.3± 0.0%

ˆFNRNW 8.6± 0.1% 3.4± 0.1% 5.2± 0.1%

ˆFNRW 9.2± 0.1% 4.7± 0.1% 6.5± 0.1%

Figure 30. Decision trees on New Adult - CA - Employment, by race
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ÂRNW 20.1± 0.1% 7.6± 0.1%

ÂRW 19.8± 0.2% 7.5± 0.2%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 0.6± 0.2% 1.0± 0.0% 1.4± 0.1%

P̂RNW 49.4± 0.3% 49.1± 0.1% 50.9± 0.0%

P̂RW 48.8± 0.1% 48.1± 0.1% 49.5± 0.1%

∆ ˆErr 0.5± 0.0% 0.7± 0.0% 0.5± 0.0%

ˆErrNW 21.3± 0.1% 14.4± 0.1% 17.5± 0.1%

ˆErrW 21.8± 0.1% 15.1± 0.1% 18.0± 0.1%

∆ ˆFPR 0.3± 0.1% 0.6± 0.1% 0.8± 0.1%

ˆFPRNW 12.7± 0.2% 10.7± 0.0% 12.1± 0.0%

ˆFPRW 12.4± 0.1% 10.1± 0.1% 11.3± 0.1%

∆ ˆFNR 0.8± 0.0% 1.3± 0.0% 1.3± 0.0%

ˆFNRNW 8.6± 0.1% 3.7± 0.1% 5.4± 0.1%

ˆFNRW 9.4± 0.1% 5.0± 0.1% 6.7± 0.1%

Figure 31. Random forests on New Adult - CA - Employment, by race
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Public Coverage - by sex.
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∆ÂR 0.0± 0.1% 0.0± 0.0%

ÂRF 1.4± 0.1% 0.4± 0.0%

ÂRM 1.4± 0.0% 0.4± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 2.6± 0.1% 2.6± 0.1% 2.6± 0.1%

P̂RF 15.1± 0.2% 14.7± 0.2% 15.1± 0.2%

P̂RM 17.7± 0.3% 17.3± 0.1% 17.7± 0.1%

∆ ˆErr 0.9± 0.1% 0.5± 0.0% 0.5± 0.0%

ˆErrF 31.2± 0.3% 30.8± 0.2% 31.0± 0.2%

ˆErrM 32.1± 0.2% 31.3± 0.2% 31.5± 0.2%

∆ ˆFPR 0.0± 0.0% 0.0± 0.0% 0.0± 0.1%

ˆFPRF 5.5± 0.1% 5.1± 0.1% 5.3± 0.1%

ˆFPRM 5.5± 0.1% 5.1± 0.1% 5.3± 0.2%

∆ ˆFNR 0.9± 0.1% 0.5± 0.0% 0.5± 0.0%

ˆFNRF 25.7± 0.3% 25.7± 0.2% 25.7± 0.2%

ˆFNRM 26.6± 0.2% 26.2± 0.2% 26.2± 0.2%

Figure 32. Logistic regression on New Adult - CA - Public Coverage, by sex
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∆ÂR 0.1± 0.0% 0.3± 0.1%

ÂRF 60.7± 0.4% 18.6± 0.4%

ÂRM 60.8± 0.4% 18.3± 0.3%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 2.6± 0.2% 6.8± 0.1% 3.0± 0.0%

P̂RF 35.5± 0.2% 20.5± 0.4% 27.5± 0.3%

P̂RM 38.1± 0.4% 27.3± 0.3% 30.5± 0.3%

∆ ˆErr 0.1± 0.1% 0.5± 0.1% 0.2± 0.1%

ˆErrF 35.1± 0.2% 18.8± 0.3% 26.7± 0.3%

ˆErrM 35.2± 0.1% 19.3± 0.2% 26.9± 0.4%

∆ ˆFPR 0.4± 0.1% 0.1± 0.0% 0.3± 0.1%

ˆFPRF 17.6± 0.1% 4.6± 0.2% 10.0± 0.3%

ˆFPRM 17.2± 0.2% 4.5± 0.2% 9.7± 0.2%

∆ ˆFNR 0.6± 0.0% 0.6± 0.2% 0.5± 0.3%

ˆFNRF 17.4± 0.2% 14.2± 0.3% 16.7± 0.1%

ˆFNRM 18.0± 0.2% 14.8± 0.1% 17.2± 0.4%

Figure 33. Decision trees on New Adult - CA - Public Coverage, by sex
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∆ÂR 0.2± 0.0% 0.2± 0.2%

ÂRF 48.1± 0.3% 13.2± 0.1%

ÂRM 47.9± 0.3% 13.0± 0.3%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 2.5± 0.1% 5.3± 0.0% 2.6± 0.1%

P̂RF 31.9± 0.3% 19.5± 0.3% 25.7± 0.4%

P̂RM 34.4± 0.4% 24.8± 0.3% 28.3± 0.3%

∆ ˆErr 0.4± 0.1% 1.0± 0.2% 0.3± 0.1%

ˆErrF 32.3± 0.2% 19.3± 0.3% 26.3± 0.2%

ˆErrM 32.7± 0.1% 20.3± 0.1% 26.6± 0.3%

∆ ˆFPR 0.2± 0.1% 0.2± 0.1% 0.3± 0.1%

ˆFPRF 14.4± 0.1% 4.1± 0.2% 8.7± 0.3%

ˆFPRM 14.2± 0.2% 4.3± 0.1% 8.4± 0.2%

∆ ˆFNR 0.7± 0.1% 0.8± 0.0% 0.7± 0.1%

ˆFNRF 17.9± 0.2% 15.2± 0.2% 17.5± 0.2%

ˆFNRM 18.6± 0.3% 16.0± 0.2% 18.2± 0.3%

Figure 34. Random forests on New Adult - CA - Public Coverage, by sex

Public Coverage - by race.
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∆ÂR 0.1± 0.0% 0.1± 0.0%

ÂRNW 1.5± 0.1% 0.4± 0.0%

ÂRW 1.4± 0.1% 0.3± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 0.1± 0.1% 0.1± 0.1% 0.1± 0.1%

P̂RNW 16.3± 0.3% 15.8± 0.3% 16.2± 0.3%

P̂RW 16.2± 0.2% 15.9± 0.2% 16.3± 0.2%

∆ ˆErr 3.2± 0.0% 2.7± 0.1% 2.8± 0.1%

ˆErrNW 33.4± 0.3% 32.6± 0.3% 32.8± 0.3%

ˆErrW 30.2± 0.3% 29.9± 0.2% 30.0± 0.2%

∆ ˆFPR 0.2± 0.0% 0.1± 0.0% 0.1± 0.1%

ˆFPRNW 5.6± 0.1% 5.2± 0.1% 5.4± 0.2%

ˆFPRW 5.4± 0.1% 5.1± 0.1% 5.3± 0.1%

∆ ˆFNR 3.0± 0.1% 2.6± 0.1% 2.7± 0.1%

ˆFNRNW 27.8± 0.3% 27.4± 0.3% 27.4± 0.3%

ˆFNRW 24.8± 0.2% 24.8± 0.2% 24.7± 0.2%

Figure 35. Logistic regression on New Adult - CA - Public Coverage, by race
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ÂRW 59.5± 0.3% 17.9± 0.4%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 1.5± 0.0% 2.2± 0.2% 1.4± 0.1%

P̂RNW 37.5± 0.2% 24.8± 0.3% 29.6± 0.4%

P̂RW 36.0± 0.2% 22.6± 0.5% 28.2± 0.3%

∆ ˆErr 2.2± 0.0% 3.0± 0.1% 2.7± 0.1%

ˆErrNW 36.4± 0.1% 20.8± 0.3% 28.3± 0.2%

ˆErrW 34.2± 0.1% 17.8± 0.4% 25.6± 0.3%

∆ ˆFPR 0.4± 0.1% 0.7± 0.0% 0.6± 0.0%

ˆFPRNW 17.7± 0.1% 5.0± 0.2% 10.2± 0.2%

ˆFPRW 17.3± 0.2% 4.3± 0.2% 9.6± 0.2%

∆ ˆFNR 1.8± 0.0% 2.3± 0.1% 2.1± 0.1%

ˆFNRNW 18.7± 0.2% 15.8± 0.2% 18.1± 0.3%

ˆFNRW 16.9± 0.2% 13.5± 0.3% 16.0± 0.2%

Figure 36. Decision trees on New Adult - CA - Public Coverage, by race
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ÂRNW 50.0± 0.2% 13.8± 0.2%

ÂRW 46.4± 0.3% 12.6± 0.2%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 1.2± 0.0% 1.0± 0.1% 0.7± 0.0%

P̂RNW 33.7± 0.3% 22.4± 0.4% 27.3± 0.4%

P̂RW 32.5± 0.3% 21.4± 0.3% 26.6± 0.4%

∆ ˆErr 2.7± 0.1% 2.9± 0.0% 2.6± 0.1%

ˆErrNW 34.0± 0.2% 21.4± 0.3% 27.9± 0.3%

ˆErrW 31.3± 0.1% 18.5± 0.3% 25.3± 0.2%

∆ ˆFPR 0.5± 0.0% 0.4± 0.0% 0.5± 0.0%

ˆFPRNW 14.6± 0.2% 4.4± 0.2% 8.9± 0.2%

ˆFPRW 14.1± 0.2% 4.0± 0.2% 8.4± 0.2%

∆ ˆFNR 2.2± 0.0% 2.5± 0.0% 2.3± 0.1%

ˆFNRNW 19.4± 0.2% 17.0± 0.2% 19.1± 0.3%

ˆFNRW 17.2± 0.2% 14.5± 0.2% 16.8± 0.2%

Figure 37. Random forests on New Adult - CA - Public Coverage, by race
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E.4.6. HMDA

ŜC CDFs for two states (NY, TX) in HMDA -2017, using g = ethnicity, race, and sex, and associated error metrics
on the prediction set. Baseline metrics computed with B = 101 models. For simple, B = 101 models; for super, B = 101
ensemble models, each composed of 21 underlying models for NY; 15 for TX. We repeat for 5 test/train splits. We also
report abstention rate ÂR.

NY - 2017 - by ethnicity.
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ÂRHL 1.9± 0.2% 0.4± 0.1%

ÂRNHL 1.9± 0.1% 0.5± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 9.7± 0.2% 10.5± 0.5% 10.4± 0.5%

P̂RHL 73.5± 0.3% 73.5± 0.6% 73.1± 0.6%

P̂RNHL 83.2± 0.1% 84.0± 0.1% 83.5± 0.1%

∆ ˆErr 1.3± 0.2% 1.7± 0.3% 1.8± 0.4%

ˆErrHL 18.7± 0.3% 18.4± 0.4% 18.9± 0.5%

ˆErrNHL 17.4± 0.1% 16.7± 0.1% 17.1± 0.1%

∆ ˆFPR 0.8± 0.1% 1.0± 0.1% 0.9± 0.1%

ˆFPRHL 10.7± 0.2% 10.2± 0.2% 10.5± 0.2%

ˆFPRNHL 11.5± 0.1% 11.2± 0.1% 11.4± 0.1%

∆ ˆFNR 2.2± 0.2% 2.7± 0.3% 2.7± 0.4%

ˆFNRHL 8.0± 0.3% 8.2± 0.4% 8.4± 0.5%

ˆFNRNHL 5.8± 0.1% 5.5± 0.1% 5.7± 0.1%

Figure 38. Logistic regression on HMDA - 2017 - NY, by ethnicity
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∆ÂR 1.2± 0.2% 2.3± 0.1%

ÂRHL 43.3± 0.4% 15.0± 0.3%

ÂRNHL 42.1± 0.2% 12.7± 0.2%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 4.0± 0.2% 1.5± 0.2% 8.2± 0.5%

P̂RHL 73.1± 0.3% 94.0± 0.3% 74.1± 0.6%

P̂RNHL 77.1± 0.1% 95.5± 0.1% 82.3± 0.1%

∆ ˆErr 0.4± 0.1% 0.7± 0.1% 0.6± 0.2%

ˆErrHL 20.6± 0.2% 2.7± 0.2% 12.2± 0.4%

ˆErrNHL 20.2± 0.1% 3.4± 0.1% 11.6± 0.2%

∆ ˆFPR 1.6± 0.1% 1.1± 0.0% 1.1± 0.1%

ˆFPRHL 11.5± 0.2% 1.4± 0.1% 5.1± 0.2%

ˆFPRNHL 9.9± 0.1% 2.5± 0.1% 6.2± 0.1%

∆ ˆFNR 1.2± 0.1% 0.4± 0.1% 1.6± 0.3%

ˆFNRHL 9.1± 0.2% 1.3± 0.2% 7.0± 0.4%

ˆFNRNHL 10.3± 0.1% 0.9± 0.1% 5.4± 0.1%

Figure 39. Decision trees on HMDA - 2017 - NY, by ethnicity
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ÂRNHL 30.3± 0.1% 8.1± 0.1%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 6.3± 0.3% 5.1± 0.6% 9.4± 0.4%

P̂RHL 71.9± 0.4% 85.8± 0.7% 71.6± 0.5%

P̂RNHL 78.2± 0.1% 90.9± 0.1% 81.0± 0.1%

∆ ˆErr 1.1± 0.1% 0.5± 0.3% 1.0± 0.2%

ˆErrHL 19.1± 0.2% 5.8± 0.4% 13.7± 0.4%

ˆErrNHL 18.0± 0.1% 6.3± 0.1% 12.7± 0.2%

∆ ˆFPR 0.7± 0.1% 1.5± 0.1% 1.2± 0.1%

ˆFPRHL 10.1± 0.2% 2.6± 0.1% 5.7± 0.2%

ˆFPRNHL 9.4± 0.1% 4.1± 0.0% 6.9± 0.1%

∆ ˆFNR 0.4± 0.2% 1.1± 0.2% 2.2± 0.2%

ˆFNRHL 9.0± 0.3% 3.3± 0.3% 8.0± 0.3%

ˆFNRNHL 8.6± 0.1% 2.2± 0.1% 5.8± 0.1%

Figure 40. Random forests on HMDA - 2017 - NY, by ethnicity

NY - 2017 - by race.
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∆ÂR 0.1± 0.0% 0.0± 0.1%

ÂRNW 2.0± 0.1% 0.5± 0.1%

ÂRW 1.9± 0.1% 0.5± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 11.5± 0.2% 11.6± 0.3% 11.5± 0.3%

P̂RNW 73.3± 0.3% 73.9± 0.4% 73.5± 0.4%

P̂RW 84.8± 0.1% 85.5± 0.1% 85.0± 0.1%

∆ ˆErr 2.8± 0.1% 2.9± 0.1% 3.0± 0.0%

ˆErrNW 19.7± 0.2% 19.1± 0.2% 19.6± 0.1%

ˆErrW 16.9± 0.1% 16.2± 0.1% 16.6± 0.1%

∆ ˆFPR 0.2± 0.1% 0.2± 0.1% 0.1± 0.1%

ˆFPRNW 11.3± 0.2% 11.0± 0.2% 11.3± 0.2%

ˆFPRW 11.5± 0.1% 11.2± 0.1% 11.4± 0.1%

∆ ˆFNR 3.0± 0.1% 3.0± 0.1% 3.0± 0.1%

ˆFNRNW 8.4± 0.2% 8.1± 0.2% 8.3± 0.2%

ˆFNRW 5.4± 0.1% 5.1± 0.1% 5.3± 0.1%

Figure 41. Logistic regression on HMDA - 2017 - NY, by race
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ÂRNW 47.1± 0.4% 15.2± 0.2%
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Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 6.2± 0.2% 3.0± 0.1% 9.1± 0.1%

P̂RNW 71.8± 0.3% 93.0± 0.2% 74.4± 0.3%

P̂RW 78.0± 0.1% 96.0± 0.1% 83.5± 0.2%

∆ ˆErr 3.1± 0.0% 0.7± 0.1% 2.3± 0.0%

ˆErrNW 22.7± 0.1% 3.9± 0.2% 13.5± 0.2%

ˆErrW 19.6± 0.1% 3.2± 0.1% 11.2± 0.2%

∆ ˆFPR 2.5± 0.1% 0.2± 0.0% 0.6± 0.1%

ˆFPRNW 12.0± 0.2% 2.5± 0.1% 6.6± 0.2%

ˆFPRW 9.5± 0.1% 2.3± 0.1% 6.0± 0.1%

∆ ˆFNR 0.6± 0.0% 0.5± 0.1% 1.8± 0.1%

ˆFNRNW 10.7± 0.1% 1.4± 0.1% 6.9± 0.2%

ˆFNRW 10.1± 0.1% 0.9± 0.0% 5.1± 0.1%

Figure 42. Decision trees on HMDA - 2017 - NY, by race
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ÂRW 29.3± 0.1% 7.8± 0.1%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 7.9± 0.2% 6.5± 0.1% 9.8± 0.1%

P̂RNW 71.5± 0.3% 85.3± 0.2% 72.4± 0.3%

P̂RW 79.4± 0.1% 91.8± 0.1% 82.2± 0.2%

∆ ˆErr 3.3± 0.0% 1.3± 0.0% 2.7± 0.1%

ˆErrNW 20.7± 0.1% 7.3± 0.1% 14.9± 0.1%

ˆErrW 17.4± 0.1% 6.0± 0.1% 12.2± 0.2%

∆ ˆFPR 1.8± 0.1% 0.0± 0.0% 0.5± 0.0%

ˆFPRNW 10.9± 0.2% 4.0± 0.1% 7.2± 0.1%

ˆFPRW 9.1± 0.1% 4.0± 0.1% 6.7± 0.1%

∆ ˆFNR 1.4± 0.0% 1.3± 0.0% 2.1± 0.1%

ˆFNRNW 9.8± 0.1% 3.3± 0.1% 7.7± 0.1%

ˆFNRW 8.4± 0.1% 2.0± 0.1% 5.6± 0.2%

Figure 43. Random forests on HMDA - 2017 - NY, by race
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NY - 2017 - by sex.
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∆ÂR 0.1± 0.0% 0.0± 0.0%

ÂRF 2.0± 0.1% 0.5± 0.0%

ÂRM 1.9± 0.1% 0.5± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 1.5± 0.0% 1.5± 0.2% 1.5± 0.2%

P̂RF 81.5± 0.1% 82.2± 0.3% 81.7± 0.3%

P̂RM 83.0± 0.1% 83.7± 0.1% 83.2± 0.1%

∆ ˆErr 0.5± 0.1% 0.6± 0.1% 0.6± 0.1%

ˆErrF 17.8± 0.2% 17.2± 0.2% 17.6± 0.2%

ˆErrM 17.3± 0.1% 16.6± 0.1% 17.0± 0.1%

∆ ˆFPR 0.2± 0.1% 0.3± 0.1% 0.2± 0.1%

ˆFPRF 11.6± 0.2% 11.3± 0.2% 11.5± 0.2%

ˆFPRM 11.4± 0.1% 11.0± 0.1% 11.3± 0.1%

∆ ˆFNR 0.3± 0.0% 0.3± 0.0% 0.3± 0.1%

ˆFNRF 6.2± 0.1% 5.9± 0.1% 6.1± 0.2%

ˆFNRM 5.9± 0.1% 5.6± 0.1% 5.8± 0.1%

Figure 44. Logistic regression on HMDA - 2017 - NY, by sex
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∆ÂR 1.4± 0.0% 0.5± 0.0%

ÂRF 43.1± 0.2% 13.2± 0.2%

ÂRM 41.7± 0.2% 12.7± 0.2%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 1.5± 0.0% 0.9± 0.0% 1.9± 0.1%

P̂RF 75.8± 0.1% 94.8± 0.1% 80.5± 0.2%

P̂RM 77.3± 0.1% 95.7± 0.1% 82.4± 0.1%

∆ ˆErr 0.4± 0.1% 0.1± 0.0% 0.3± 0.0%

ˆErrF 20.5± 0.2% 3.3± 0.1% 11.8± 0.2%

ˆErrM 20.1± 0.1% 3.4± 0.1% 11.5± 0.2%

∆ ˆFPR 0.2± 0.1% 0.2± 0.0% 0.1± 0.0%

ˆFPRF 10.1± 0.2% 2.2± 0.1% 6.1± 0.1%

ˆFPRM 9.9± 0.1% 2.4± 0.1% 6.2± 0.1%

∆ ˆFNR 0.3± 0.0% 0.2± 0.0% 0.4± 0.1%

ˆFNRF 10.4± 0.1% 1.1± 0.1% 5.7± 0.2%

ˆFNRM 10.1± 0.1% 0.9± 0.1% 5.3± 0.1%

Figure 45. Decision trees on HMDA - 2017 - NY, by sex
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∆ÂR 1.2± 0.0% 0.3± 0.0%

ÂRF 31.4± 0.1% 8.4± 0.1%

ÂRM 30.2± 0.1% 8.1± 0.1%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 1.8± 0.0% 1.7± 0.1% 2.0± 0.1%

P̂RF 76.6± 0.1% 89.4± 0.2% 79.0± 0.2%

P̂RM 78.4± 0.1% 91.1± 0.1% 81.0± 0.1%

∆ ˆErr 0.4± 0.1% 0.1± 0.1% 0.4± 0.0%

ˆErrF 18.4± 0.2% 6.3± 0.2% 13.0± 0.2%

ˆErrM 18.0± 0.1% 6.2± 0.1% 12.6± 0.2%

∆ ˆFPR 0.0± 0.1% 0.3± 0.0% 0.1± 0.1%

ˆFPRF 9.4± 0.2% 3.8± 0.1% 6.7± 0.2%

ˆFPRM 9.4± 0.1% 4.1± 0.1% 6.8± 0.1%

∆ ˆFNR 0.4± 0.0% 0.4± 0.1% 0.5± 0.1%

ˆFNRF 8.9± 0.1% 2.5± 0.1% 6.3± 0.2%

ˆFNRM 8.5± 0.1% 2.1± 0.0% 5.8± 0.1%

Figure 46. Random forests on HMDA - 2017 - NY, by sex

TX - 2017 - by ethnicity.
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∆ÂR 0.1± 0.0% 0.0± 0.0%

ÂRHL 1.1± 0.0% 0.4± 0.0%

ÂRNHL 1.0± 0.0% 0.4± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 13.3± 0.1% 13.1± 0.0% 13.0± 0.0%

P̂RHL 64.7± 0.2% 65.1± 0.1% 65.0± 0.1%

P̂RNHL 78.0± 0.1% 78.2± 0.1% 78.0± 0.1%

∆ ˆErr 3.4± 0.1% 3.3± 0.1% 3.3± 0.2%

ˆErrHL 17.5± 0.2% 17.1± 0.2% 17.3± 0.2%

ˆErrNHL 14.1± 0.1% 13.8± 0.1% 14.0± 0.0%

∆ ˆFPR 0.6± 0.0% 0.6± 0.0% 0.6± 0.0%

ˆFPRHL 5.6± 0.1% 5.4± 0.0% 5.6± 0.0%

ˆFPRNHL 6.2± 0.1% 6.0± 0.0% 6.2± 0.0%

∆ ˆFNR 4.0± 0.1% 3.9± 0.1% 3.9± 0.2%

ˆFNRHL 11.9± 0.2% 11.6± 0.2% 11.7± 0.2%

ˆFNRNHL 7.9± 0.1% 7.7± 0.1% 7.8± 0.0%

Figure 47. Logistic regression on HMDA - 2017 - TX, by ethnicity
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ÂRNHL 33.0± 0.1% 17.0± 0.1%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 7.4± 0.2% 4.1± 0.1% 8.5± 0.0%

P̂RHL 72.0± 0.2% 90.2± 0.1% 76.7± 0.1%

P̂RNHL 79.4± 0.0% 94.3± 0.0% 85.2± 0.1%

∆ ˆErr 3.7± 0.0% 0.7± 0.1% 2.0± 0.1%

ˆErrHL 19.2± 0.1% 3.0± 0.1% 8.4± 0.1%

ˆErrNHL 15.5± 0.1% 2.3± 0.0% 6.4± 0.0%

∆ ˆFPR 2.4± 0.1% 0.1± 0.0% 0.4± 0.0%

ˆFPRHL 10.1± 0.1% 1.2± 0.0% 3.3± 0.1%

ˆFPRNHL 7.7± 0.0% 1.1± 0.0% 2.9± 0.1%

∆ ˆFNR 1.2± 0.1% 0.6± 0.0% 1.5± 0.0%

ˆFNRHL 9.1± 0.1% 1.8± 0.0% 5.0± 0.0%

ˆFNRNHL 7.9± 0.0% 1.2± 0.0% 3.5± 0.0%

Figure 48. Decision trees on HMDA - 2017 - TX, by ethnicity
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∆ÂR 6.2± 0.1% 2.5± 0.1%

ÂRHL 31.9± 0.0% 13.2± 0.1%

ÂRNHL 25.7± 0.1% 10.7± 0.0%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 8.7± 0.1% 6.9± 0.1% 9.6± 0.1%

P̂RHL 70.6± 0.2% 83.0± 0.2% 72.7± 0.2%

P̂RNHL 79.3± 0.1% 89.9± 0.1% 82.3± 0.1%

∆ ˆErr 3.3± 0.0% 1.2± 0.1% 2.2± 0.1%

ˆErrHL 17.3± 0.1% 5.3± 0.1% 10.5± 0.1%

ˆErrNHL 14.0± 0.1% 4.1± 0.0% 8.3± 0.0%

∆ ˆFPR 1.7± 0.1% 0.1± 0.0% 0.4± 0.1%

ˆFPRHL 8.5± 0.1% 2.0± 0.0% 4.1± 0.0%

ˆFPRNHL 6.8± 0.0% 1.9± 0.0% 3.7± 0.1%

∆ ˆFNR 1.7± 0.1% 1.1± 0.1% 1.8± 0.1%

ˆFNRHL 8.9± 0.1% 3.3± 0.1% 6.4± 0.1%

ˆFNRNHL 7.2± 0.0% 2.2± 0.0% 4.6± 0.0%

Figure 49. Random forests on HMDA - 2017 - TX, by ethnicity
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TX - 2017 - by race.
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ÂRNW 1.0± 0.0% 0.4± 0.0%
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Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 2.6± 0.1% 2.7± 0.1% 2.7± 0.1%

P̂RNW 72.6± 0.2% 72.8± 0.0% 72.6± 0.0%

P̂RW 75.2± 0.1% 75.5± 0.1% 75.3± 0.1%

∆ ˆErr 0.0± 0.1% 0.2± 0.0% 0.1± 0.0%

ˆErrNW 14.9± 0.2% 14.4± 0.1% 14.7± 0.1%

ˆErrW 14.9± 0.1% 14.6± 0.1% 14.8± 0.1%

∆ ˆFPR 1.1± 0.1% 0.9± 0.1% 1.0± 0.1%

ˆFPRNW 7.0± 0.2% 6.6± 0.1% 6.8± 0.1%

ˆFPRW 5.9± 0.1% 5.7± 0.0% 5.8± 0.0%

∆ ˆFNR 1.2± 0.0% 1.1± 0.1% 1.1± 0.0%

ˆFNRNW 7.9± 0.1% 7.8± 0.0% 7.9± 0.1%

ˆFNRW 9.1± 0.1% 8.9± 0.1% 9.0± 0.1%

Figure 50. Logistic regression on HMDA - 2017 - TX, by race
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∆ÂR 0.1± 0.1% 0.0± 0.3%

ÂRNW 34.7± 0.2% 18.0± 0.3%

ÂRW 34.8± 0.1% 18.0± 0.0%

Decision tree prediction set metrics

Baseline Simple Super

∆P̂R 2.5± 0.0% 1.8± 0.0% 4.1± 0.2%

P̂RNW 75.6± 0.1% 91.9± 0.1% 79.8± 0.3%

P̂RW 78.1± 0.1% 93.7± 0.1% 83.9± 0.1%

∆ ˆErr 0.0± 0.1% 0.0± 0.0% 0.1± 0.0%

ˆErrNW 16.4± 0.1% 2.4± 0.0% 6.8± 0.1%

ˆErrW 16.4± 0.0% 2.4± 0.0% 6.9± 0.1%

∆ ˆFPR 1.2± 0.0% 0.0± 0.0% 0.1± 0.0%

ˆFPRNW 9.2± 0.1% 1.1± 0.0% 2.9± 0.1%

ˆFPRW 8.0± 0.1% 1.1± 0.0% 3.0± 0.1%

∆ ˆFNR 1.2± 0.0% 0.1± 0.0% 0.1± 0.1%

ˆFNRNW 7.2± 0.1% 1.4± 0.0% 3.9± 0.1%

ˆFNRW 8.4± 0.1% 1.3± 0.0% 3.8± 0.0%

Figure 51. Decision trees on HMDA - 2017 - TX, by race
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P̂RNW 74.4± 0.2% 85.6± 0.1% 76.3± 0.1%

P̂RW 77.8± 0.1% 88.9± 0.1% 80.8± 0.1%

∆ ˆErr 0.0± 0.0% 0.1± 0.0% 0.1± 0.0%

ˆErrNW 14.8± 0.1% 4.3± 0.0% 8.7± 0.1%

ˆErrW 14.8± 0.1% 4.4± 0.0% 8.8± 0.1%

∆ ˆFPR 0.7± 0.0% 0.1± 0.1% 0.1± 0.1%

ˆFPRNW 7.8± 0.1% 1.8± 0.1% 3.7± 0.1%

ˆFPRW 7.1± 0.1% 1.9± 0.0% 3.8± 0.0%

∆ ˆFNR 0.8± 0.0% 0.2± 0.1% 0.1± 0.0%

ˆFNRNW 6.9± 0.1% 2.6± 0.1% 5.1± 0.0%

ˆFNRW 7.7± 0.1% 2.4± 0.0% 5.0± 0.0%

Figure 52. Random forests on HMDA - 2017 - TX, by race

TX - 2017 - by sex.
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∆ÂR 0.0± 0.0% 0.0± 0.0%

ÂRF 1.0± 0.0% 0.4± 0.0%

ÂRM 1.0± 0.0% 0.4± 0.0%

Logistic regression prediction set metrics

Baseline Simple Super

∆P̂R 5.7± 0.1% 5.6± 0.0% 5.6± 0.0%

P̂RF 70.8± 0.2% 71.1± 0.2% 70.9± 0.2%

P̂RM 76.5± 0.1% 76.7± 0.2% 76.5± 0.2%

∆ ˆErr 1.1± 0.2% 1.0± 0.1% 1.0± 0.1%

ˆErrF 15.7± 0.2% 15.3± 0.0% 15.5± 0.0%

ˆErrM 14.6± 0.0% 14.3± 0.1% 14.5± 0.1%

∆ ˆFPR 0.4± 0.0% 0.4± 0.1% 0.4± 0.0%

ˆFPRF 5.8± 0.1% 5.6± 0.1% 5.7± 0.0%

ˆFPRM 6.2± 0.1% 6.0± 0.0% 6.1± 0.0%

∆ ˆFNR 1.4± 0.1% 1.3± 0.1% 1.3± 0.1%

ˆFNRF 9.8± 0.2% 9.6± 0.0% 9.7± 0.0%

ˆFNRM 8.4± 0.1% 8.3± 0.1% 8.4± 0.1%

Figure 53. Logistic regression on HMDA - 2017 - TX, by sex
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P̂RM 78.7± 0.1% 94.0± 0.1% 84.6± 0.1%

∆ ˆErr 1.1± 0.1% 0.2± 0.0% 0.5± 0.0%

ˆErrF 17.2± 0.1% 2.6± 0.0% 7.2± 0.1%

ˆErrM 16.1± 0.0% 2.4± 0.0% 6.7± 0.1%

∆ ˆFPR 0.8± 0.1% 0.2± 0.0% 0.3± 0.1%

ˆFPRF 8.8± 0.1% 1.0± 0.0% 2.8± 0.0%

ˆFPRM 8.0± 0.0% 1.2± 0.0% 3.1± 0.1%

∆ ˆFNR 0.3± 0.1% 0.4± 0.0% 0.9± 0.1%

ˆFNRF 8.4± 0.1% 1.6± 0.0% 4.5± 0.1%

ˆFNRM 8.1± 0.0% 1.2± 0.0% 3.6± 0.0%

Figure 54. Decision trees on HMDA - 2017 - TX, by sex
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ÂRF 28.4± 0.1% 11.9± 0.2%

ÂRM 26.7± 0.1% 11.1± 0.0%

Random forest prediction set metrics

Baseline Simple Super

∆P̂R 4.4± 0.0% 4.0± 0.0% 5.2± 0.1%

P̂RF 74.1± 0.1% 85.5± 0.1% 76.3± 0.2%

P̂RM 78.5± 0.1% 89.5± 0.1% 81.5± 0.1%

∆ ˆErr 1.0± 0.1% 0.4± 0.0% 0.7± 0.1%

ˆErrF 15.5± 0.1% 4.6± 0.0% 9.3± 0.0%

ˆErrM 14.5± 0.0% 4.2± 0.0% 8.6± 0.1%

∆ ˆFPR 0.3± 0.1% 0.3± 0.0% 0.4± 0.1%

ˆFPRF 7.4± 0.1% 1.7± 0.0% 3.5± 0.1%

ˆFPRM 7.1± 0.0% 2.0± 0.0% 3.9± 0.0%

∆ ˆFNR 0.7± 0.0% 0.8± 0.0% 1.1± 0.1%

ˆFNRF 8.1± 0.1% 3.0± 0.0% 5.8± 0.1%

ˆFNRM 7.4± 0.1% 2.2± 0.0% 4.7± 0.0%

Figure 55. Random forests on HMDA - 2017 - TX, by sex
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E.4.7. DISCUSSION OF EXTENDED RESULTS FOR ALGORITHM 1

Overall, our results support that examining self-consistency and error together provide a much richer picture of model
behavior, both with respect to arbitrariness and fairness metric disparities. Particularly in smaller datasets, the learning process
produces models with a large degree of variance. As a result, ensembling with confidence can lead to huge abstention rates.

Improving self-consistency by doing a round of variance reduction first and then ensembling with confidence (i.e., super-
ensembling) can lead to improvements in error over baselines while having a lower abstention rate. These improvements
are typically shared across subgroups, but may not be symmetric; some subgroups may benefit more than others. As a
result, even though accuracy increases absolutely for both groups, relative fairness metrics can decrease. This is a different
instantiation of the fairness-accuracy trade-off than is often written about, which posits a necessary decrease in accuracy for
one subgroup to improve fairness between binarized groups. Our results suggest that it is worth first tuning for accuracy, and
then seeing how fairness interventions can balance the benefits across subgroups. Of course, it is possible that doing this
could lead to injecting variance back into the model outputs, thereby reducing self-consistency and inducing arbitrariness.
We leave this investigation to future work.

Additionally, our results reify that choice of model matters a lot. While overall error rates across model types may be similar,
the sources of that error are not necessarily the same. This is an obvious point, relating to bias and variance. However,
a lot of fair classification work describes similar performance across logistic regression, decision trees, random forests,
SVMs, and MLPs (e.g., Chen et al. (2018)). Looking at self-consistency confirms that this is not the case, with decision
trees and random forests in particular exhibiting higher variance, and thus being more amenable to variance reduction and
improvements in overall error. As fair classification research transitions to larger benchmarks, it will likely be fruitful to
investigate more complex model classes.

We provide run times on our cluster environment in Table 2. We did not select for CPUs with any particular features, and
thus the run times are quite variable.

Table 2. These times are recorded for our cluster environment (hh:mm:ss), described in Appendix E.2 for our Algorithm 1 experiments.
At the time of running, due to time constraints, the authors had not yet parallelized this part of the code.

Dataset g Logistic regression Decision trees Random forests

South German Credit sex 00:42:50 00:25:28 00:34:42

COMPAS race 00:57:05 00:39:24 00:31:47

Old Adult sex 01:08:37 01:23:39 00:57:11

Taiwan Credit sex 00:31:35 01:34:57 01:53:33

New Adult - CA
Income sex,race 01:39:53 02:51:13 04:59:07

Employment sex,race 02:20:15 02:18:16 03:00:15

Public Coverage sex,race 01:13:33 02:02:57 02:24:08

HMDA - 2017
NY sex, race, ethnicity 03:50:52 05:00:19 05:39:44

TX sex, race, ethnicity 05:18:59 04:10:34 04:18:59

We also provide details on systematic arbitrariness, which we measure using the Ŵ1 (Appendix B.3.1). As noted in
Appendix B.3.1, since this metric is an average, its measure necessarily changes if we compute it over a different set of
levels K̂. To make distances across interventions comparable, we treat CDF values below κ as 0, so that all of the probability
mass is on ŜC ≥ κ. We therefore report two versions of these results, those for no abstention and those that account for
abstention at values < κ. ∆ is the difference between Ŵ1Simple − Ŵ1Super. Positive differences indicate cases for which
the super-ensembling method decreases the Wasserstein-1 distance between subgroup CDFs; negative differences indicate
increases. While in some cases there is an increase, it is worth noting that this aligns with cases for which the Ŵ1 distance is
very close to 0. Old Adult, highlighted below, is the only dataset that exhibts large amounts of systematic arbitrariness
(for decision tress and random forests, in particular; it exhibits the highest amount for logistic regression, but is overall low).
Old Adult and New Adult -- Employment (by sex) are two of the only tasks that show any fairness disparities
that are > 3%.
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Table 3. Empirical Wasserstein-1 (Ŵ1) measurements without abstention

Dataset g Logistic regression Decision trees Random forests

Simple Super ∆ Simple Super ∆ Simple Super ∆

German Credit sex 0.0181 0.0101 0.0079 0.0162 0.0244 -0.0082 0.0181 0.0175 0.0006

COMPAS race 0.0073 0.0043 0.0030 0.0189 0.0170 0.0019 0.0073 0.0031 0.0043

Old Adult sex 0.0206 0.0033 0.0173 0.1386 0.0273 0.1112 0.1266 0.0255 0.1011

Taiwan Credit sex 0.0028 0.0007 0.0020 0.0223 0.0108 0.0115 0.0240 0.0065 0.0175

New Adult - CA
Income sex 0.0009 0.0003 0.0006 0.0138 0.0055 0.0083 0.0089 0.0018 0.0071

race 0.0003 0.0001 0.0002 0.0170 0.0073 0.0096 0.0163 0.0055 0.0108

Employment sex 0.0004 0.0002 0.0003 0.0010 0.0011 -0.0001 0.0043 0.0031 0.0013

race 0.0004 0.0001 0.0004 0.0020 0.0007 0.0013 0.0021 0.0015 0.0006

Public Coverage sex 0.0004 0.0001 0.0003 0.0029 0.0024 0.0005 0.0045 0.0023 0.0024

race 0.0010 0.0003 0.0007 0.0200 0.0089 0.0113 0.0235 0.0089 0.0147

HMDA - 2017
NY sex 0.0002 0.0004 -0.0002 0.0096 0.0039 0.0056 0.0080 0.0023 0.0056

race 0.0009 0.0005 0.0005 0.0433 0.0203 0.0231 0.0409 0.0133 0.0276

ethnicity 0.0005 0.0005 0.0000 0.0229 0.0156 0.0073 0.0248 0.0108 0.0140

TX sex 0.0001 0.0001 0.0000 0.0153 0.0097 0.0055 0.0113 0.0054 0.0058

race 0.0001 0.0001 0.0000 0.0010 0.0012 -0.0002 0.0013 0.0007 0.0006

ethnicity 0.0007 0.0002 0.0004 0.0509 0.0291 0.0219 0.0379 0.0190 0.0188

Table 4. Empirical Wasserstein-1 (Ŵ1) measurements with abstention using κ ≥ .75

Dataset g Logistic regression Decision trees Random forests

Simple Super ∆ Simple Super ∆ Simple Super ∆

German Credit sex 0.0113 0.0080 0.0034 0.0090 0.0094 -0.0004 0.0084 0.0132 -0.0048

COMPAS race 0.0035 0.0019 0.0017 0.0039 0.0060 -0.0021 0.0041 0.0019 0.0022

Old Adult sex 0.0110 0.0020 0.0090 0.0654 0.0155 0.0500 0.0634 0.0139 0.0494

Taiwan Credit sex 0.0014 0.0005 0.0009 0.0057 0.0059 -0.0002 0.0107 0.0040 0.0067

New Adult - CA
Income sex 0.0005 0.0002 0.0004 0.0051 0.0032 0.0019 0.0047 0.0012 0.0035

race 0.0002 0.0000 0.0002 0.0073 0.0040 0.0033 0.0082 0.0028 0.0053

Employment sex 0.0002 0.0001 0.0001 0.0005 0.0005 0.0001 0.0020 0.0014 0.0006

race 0.0002 0.0000 0.0002 0.0012 0.0003 0.0008 0.0008 0.0005 0.0003

Public Coverage sex 0.0002 0.0001 0.0001 0.0006 0.0012 -0.0006 0.0011 0.0009 0.0002

race 0.0006 0.0001 0.0005 0.0068 0.0049 0.0019 0.0106 0.0047 0.0059

HMDA - 2017
NY sex 0.0001 0.0002 -0.0001 0.0033 0.0020 0.0012 0.0040 0.0013 0.0028

race 0.0004 0.0002 0.0002 0.0155 0.0111 0.0044 0.0190 0.0076 0.0114

ethnicity 0.0002 0.0002 0.0001 0.0055 0.0083 -0.0028 0.0081 0.0059 0.0022

TX sex 0.0000 0.0000 0.0000 0.0061 0.0050 0.0011 0.0058 0.0029 0.0028

race 0.0000 0.0001 0.0000 0.0004 0.0005 -0.0002 0.0007 0.0004 0.0003

ethnicity 0.0003 0.0001 0.0003 0.0229 0.0159 0.0070 0.01200 0.0104 0.0095
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E.5. Reliability and fairness metrics in COMPAS and South German Credit

Even before we apply our intervention to improve self-consistency, our results in Section 3 show close-to-parity ˆErr, ˆFPR,
and ˆFNR across subgroups in COMPAS (and similarly for South German Credit, below). These results are surprising.
We run B = 101 models to produce estimates of variance and self-consistency, but of course doing this also has the effect of
estimating the expected error more generally (with variance representing a portion of that error). Our estimates of expected
error for these tasks indicate that the average model produced training on COMPAS and South German Credit, with
respect to popular fairness definitions like Equality of Opportunity and Equalized Odds (Barocas et al., 2019; Hardt et al.,
2016) are in fact baseline close to parity, with no fairness intervention applied. We found this across model types for both
datasets, though the story becomes more complicated when we apply techniques to improve self-consistency (discussed in
Appendix E.4.7).

Of course, we did not expect this result, as these are two of the de facto standard benchmark datasets in algorithmic fairness.
They are used in countless other studies to probe and verify algorithmic fairness interventions (Fabris et al., 2022). As a
result, we initially thought that our results must be incorrect. We therefore looked at the underlying models in our bootstrap
runs to see the error of the underlying models.

We re-ran our baseline experiments with B = 1001 and for 100 test/train splits for logistic regression. In Figure 56, we plot
the (100, 100) bootstrap models that went into these results. For another view on analogous information, in Table 5, we pro-
vide an excerpt of the results for COMPAS regarding the underlying 1010 random forest classifiers used to produce Figure 2a.
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Figure 56. Cumulative distribution of error disparity across 100, 100 logistic regression models trained on COMPAS.

Overall, we can see that there is a wide range of error disparities that trend in both directions, with a skew toward higher
ˆFPR for g = NW. These results support our claim that training many models is necessary to get an accurate picture of

expected error, with implications both for reproducibility of experiments that just train and analyze a small handful of
models and for generalizability. There are models that exhibit worse degrees of unfairness in both directions, but they are
more unlikely than models that exhibit smaller disparities.

We subset the above results to the 100 models that produce the lowest ˆErr, as this is often the selection critera for
picking models to post-process. We plot these results below. These top-performing models in fact exhibit (on average)
closer-to-parity for ˆFPR and ˆFNR.
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Figure 57. CDF of error disparity across the top 100 logistic regression models (of the 100, 100 models) trained on COMPAS.
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Table 5. Comparing subgroup error rates in COMPAS for different random forest classifiers trained to produce Figure 2a. Each table
looks at the top-3 highest differences between subgroups for the specified metric: (a) ˆErrNW − ˆErrW, when ˆErrNW > ˆErrW; (b)
ˆErrW − ˆErrNW, when ˆErrW > ˆErrNW; (c) ˆFPRNW − ˆFPRW, when ˆFPRNW > ˆFPRW; (d) ˆFPRW − ˆFPRNW, when ˆFPRW > ˆFPRNW; (e)
ˆFNRNW − ˆFNRW, when ˆFNRNW > ˆFNRW; and, (f) (e) ˆFNRW − ˆFNRNW, when ˆFNRW > ˆFNRNW. We highlight the overall error metric

in gray, the larger metric (being subtracted from) in blue, the smaller metric (being subtracted) in red, and the difference in the metric
between subgroups in purple. Note that run 757 appears twice, which we mark in orange.

(a) The top-3 most unfair models according to subgroup-specific ˆErr, when ˆErrNW > ˆErrW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆErrNW − ˆErrW

762 8 504 0.374 0.179 0.196 0.405 0.204 0.201 0.315 0.13 0.186 0.09
757 8 464 0.369 0.167 0.202 0.395 0.201 0.193 0.318 0.101 0.218 0.077
328 4 116 0.371 0.165 0.206 0.395 0.181 0.214 0.323 0.134 0.189 0.072

(b) The top-3 most unfair models according to subgroup-specific ˆErr, when ˆErrW > ˆErrNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆErrW − ˆErrNW

414 5 75 0.376 0.167 0.209 0.352 0.158 0.194 0.422 0.186 0.236 0.07
435 5 180 0.376 0.199 0.177 0.355 0.189 0.166 0.416 0.217 0.198 0.061
413 5 70 0.378 0.189 0.189 0.359 0.188 0.171 0.413 0.191 0.222 0.054

(c) The top-3 most unfair models according to subgroup-specific ˆFPR, when ˆFPRNW > ˆFPRW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFPRNW − ˆFPRW

757 8 464 0.369 0.167 0.202 0.395 0.201 0.193 0.318 0.101 0.218 0.1
729 8 240 0.358 0.162 0.197 0.376 0.189 0.187 0.323 0.107 0.216 0.082
791 8 736 0.377 0.171 0.205 0.395 0.198 0.197 0.341 0.118 0.222 0.08

(d) The top-3 most unfair models according to subgroup-specific ˆFPR, when ˆFPRW > ˆFPRNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFPRW − ˆFPRNW

639 7 280 0.36 0.187 0.173 0.352 0.174 0.178 0.376 0.212 0.164 0.038
807 9 72 0.381 0.191 0.19 0.372 0.179 0.192 0.398 0.214 0.184 0.035
543 6 264 0.358 0.155 0.203 0.351 0.144 0.206 0.37 0.175 0.196 0.031

(e) The top-3 most unfair models according to subgroup-specific ˆFNR, when ˆFNRNW > ˆFNRW (i.e., unfair toward NW).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFNRNW − ˆFNRW

246 3 141 0.379 0.166 0.213 0.398 0.169 0.229 0.345 0.161 0.184 0.045
506 6 42 0.367 0.17 0.197 0.386 0.175 0.211 0.332 0.161 0.171 0.04
204 3 15 0.384 0.185 0.199 0.394 0.181 0.213 0.365 0.192 0.173 0.04

(f) The top-3 most unfair models according to subgroup-specific ˆFNR, when ˆFNRW > ˆFNRNW (i.e., unfair toward W).

Run # s b ˆErr ˆFPR ˆFNR ˆErrNW ˆFPRNW ˆFNRNW ˆErrW ˆFPRW ˆFNRW ˆFNRW − ˆFNRNW

474 5 375 0.373 0.175 0.199 0.356 0.183 0.174 0.406 0.159 0.247 0.073
401 5 10 0.378 0.189 0.19 0.363 0.197 0.167 0.406 0.173 0.233 0.066
52 1 53 0.367 0.172 0.196 0.351 0.178 0.173 0.397 0.16 0.238 0.065
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This detailed view provides insight into how such a result is possible. Broadly speaking, individual runs have roughly similar
error;16 yet, the subgroup-specific error rates that compose the overall error can nevertheless vary widely depending on
the underlying training data. This observation aligns with current interest in model multiplicity in the algorithmic fairness
community (Black et al., 2022b; Watson-Daniels et al., 2022), which imports the idea from Breiman (2001). In this case, as
suggested by Table 5, there are models that demonstrate unfairness toward both subgroups with respect to each error rate
metric ˆErr, ˆFPR, and ˆFNR. When we move away from attempting to find a single model that performs well (accurately or
fairly) on COMPAS, and instead consider the information contained across different possible models, we yield the result that
the average, expected behavior smooths over the variance in underlying models such that the result is close to fair: The
average of unfair models with high variance in subgroup error rates is essentially fair.

Stability analysis. To verify the stability of this result, we re-execute our experiments for increasing numbers of train/test
splits S and replicates B. While our results for COMPAS are generally tight for small S (e.g., Figures 2a and 5), this was not
the case for German Credit, for which it was difficult to estimate self-consistency consistently. As a result, for COMPAS,
we did not expect markedly different results for increased S. Our results for S = 100, B = 1001 using logistic regression
(Figure 58, Table 6) confirm this intuition.
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Figure 58. COMPAS split by g = race, B = 1001, S = 100

Table 6. Mean ± STD across S = 100 train/test splits
× B = 1001 runs.

COMPAS

ˆErr ˆFPR ˆFNR ŜC

Total .333 ± .008 .14 ± .009 .192 ± .01 .883 ± .004

g = NW .333 ± .01 .148 ± .011 .185 ± .012 .88 ± .005

g = W .332 ± .014 .125 ± .013 .207 ± .016 .888 ± .006

We provide analogous results for German Credit, with S = 1000, B = 1001 using random forests (Figure 59, Table 7).
It takes an enormous number of runs to produce stable estimates of error and ŜC for German Credit, which indicate
statistical equality across groups. Arguably, our results below for 1, 001, 000 models still are very high variance (certainly
with respect to error metrics). This task really has too few data points (≈ 600) to generalize reliably.
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Figure 59. German Credit split by g = sex, S = 1000, B = 100

Table 7. Mean ± STD across S = 1000 train/test splits
× B = 1001 runs.

South German Credit

ˆErr ˆFPR ˆFNR ŜC

Total .28 ± .021 .173 ± .028 .107 ± .017 .769 ± .015

g = F .288 ± .064 .183 ± .072 .105 ± .037 .766 ± .04

g = M .279 ± .023 .171 ± .029 .108 ± .018 .769 ± .016

16This should be taken relatively. In general, COMPAS demonstrates high error; the error is relatively tight given just how much error
there is. The error fluctuates depending on the training data, but the average error rate across train/test splits is rather tight, despite the
fluctuations in error within the B runs of each split.


